Project description:Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. This SuperSeries is composed of the following subset Series: GSE20168: Transcriptional analysis of prefrontal area 9 in Parkinson's disease GSE20291: Transcriptional analysis of putamen in Parkinson's disease GSE20292: Transcriptional analysis of whole substantia nigra in Parkinson's disease Refer to individual Series
Project description:Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. This SuperSeries is composed of the SubSeries listed below.
Project description:Detailed analysis of disease-affected tissue provides insight into molecular mechanisms contributing to pathogenesis. Substantia nigra, striatum and cortex are functionally connected with increasing degrees of alpha-synuclein pathology in Parkinson's disease. Functional and causal pathway analysis of gene expression and proteomic alterations in these three regions revealed pathways that correlated with deposition of alpha-synuclein. Microarray and RNAseq experiments revealed previously unidentified causal changes related to oligodendrocyte function and synaptic vesicle release and other changes were reflected across all brain regions. Importantly a subset of these changes were replicated in Parkinson's disease blood. Proteomic assessment revealed alterations in mitochondria and vesicular transport proteins that preceded gene gene expression changes indicating defects in translation and/or protein turnover. Our combined approach of proteomics, RNAseq and microarray analyses provides a comprehensive view of the molecular changes that accompany alpha-synculein pathology in Parkinson's disease, and may be instrumental in understanding and diagnosing Parkinson's disease progression. Substantia Nigra (3 normal, 3 PD), Striatum (6 normal, 6 PD), Cortex (5 normal, 5 PD), Cortex non-PD neurodegeneration (2 normal, 3 DLB). Note Sample X201264 was used both for Cortex normal and for Cortex nonPD normal
Project description:Detailed analysis of disease-affected tissue provides insight into molecular mechanisms contributing to pathogenesis. Substantia nigra, striatum and cortex are functionally connected with increasing degrees of alpha-synuclein pathology in Parkinson's disease. Functional and causal pathway analysis of gene expression and proteomic alterations in these three regions revealed pathways that correlated with deposition of alpha-synuclein. Microarray and RNAseq experiments revealed previously unidentified causal changes related to oligodendrocyte function and synaptic vesicle release and other changes were reflected across all brain regions. Importantly a subset of these changes were replicated in Parkinson's disease blood. Proteomic assessment revealed alterations in mitochondria and vesicular transport proteins that preceded gene gene expression changes indicating defects in translation and/or protein turnover. Our combined approach of proteomics, RNAseq and microarray analyses provides a comprehensive view of the molecular changes that accompany alpha-synculein pathology in Parkinson's disease, and may be instrumental in understanding and diagnosing Parkinson's disease progression.
Project description:Genome-wide transcriptome analysis of expression changes in laser-dissected SNpc neurons from Parkinson's disease brain tissue versus control brain tissue. Post-mortem brain expression analysis performed in 10 PD brain samples and 8 control brain samples.
Project description:Genome-wide transcriptome analysis of expression changes in Globus Pallidus interna (GPi) from Parkinson's disease brain tissue versus control brain tissue. Post-mortem brain expression analysis performed in 10 PD brain samples and 10 control brain samples.
Project description:Genome-wide transcriptome analysis of expression changes in Globus Pallidus interna (GPi) from Parkinson's disease brain tissue versus control brain tissue.