Project description:Characterization of miRNAs in red flour beetle Tribolium castaneum by deep sequencing of two different RNA libraries. Sequencing of Tribolium small RNAs from adults and embryos.
Project description:Genome-wide survey of transcriptional differences between males and females of Tribolium castaneum, the red flour beetle Four biological replicates for male and female beetles with 20 individuals per replicate. Two technical replicates, one replicate per sex. 16,434 genes/expressed non-coding regions represented twice on each array. Three 60 mer probes for most exons/expressed non-coding regions. 167,538 unique genomic probes replicated twice per array.
Project description:Background: The AMP-activated protein kinase (AMPK) is an intracellular fuel sensor for lipid and glucose metabolism. In addition to the short-term regulation of metabolic enzymes by phosphorylation, AMPK may also exert long-term effects on the transcription of downstream genes through the regulation of transcription factors and coactivators. In this study, RNA interference (RNAi) was conducted to investigate the effects of knockdown of TcAMPKα on lipid and carbohydrate metabolism in the red flour beetle, Tribolium castaneum, and the transcriptome profiles of dsTcAMPKα-injected and dsEGFP-injected beetles under normal conditions were compared by RNA-sequencing. Results: RNAi-mediated suppression of TcAMPKα increased whole-body triglyceride (TG) level and the ratio between glucose and trehalose, as was confirmed by in vivo treatment with the AMPK-activating compound, 5-Aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR). A total of 1184 differentially expressed genes (DEGs) were identified between dsTcAMPKα-injected and dsEGFP-injected beetles. These include genes involved in lipid and carbohydrate metabolism as well as insulin/insulin-like growth factor signaling (IIS). Real-time quantitative polymerase chain reaction analysis confirmed the differential expression of selected genes. Interestingly, metabolism-related transcription factors such as sterol regulatory element-binding protein 1 (SREBP1) and carbohydrate response element-binding protein (ChREBP) were also significantly upregulated in dsTcAMPKα-injected beetles. Conclusions: AMPK plays a critical role in the regulation of beetle metabolism. The findings of DEGs involved in lipid and carbohydrate metabolism provide valuable insight into the role of AMPK signaling in the transcriptional regulation of insect metabolism.