Project description:ES cell-derived neurons of forebrain identity were isolated by magnetic sorting, cultured for 7 days and transduced with either Nurr1 or eGFP lentivirus. After an additional 12 h in culture, mRNA was isolated and subjected to microarray analysis. The raw data have been provided in CEL format The processed data have been provided in CHP format ES-cell derived forebrain neurons were plated in 10cm dishes and infected with either GFP or Nurr1 lentivirus at a MOI of 10. 18h after infection, RNA was prepped by the Qiagen mini kit and submitted to labeling and hybridization. Microarray experiments were carried out using GeneChip 430A 2.0 arrays (Affymetrix). Data was normalized and expression values were computed using the gcrma method. Statistical analysis was performed by empirical Bayes inference for linear models using the limma package. The inclusion criteria fold-change was > 1.6 and P < 0.001
Project description:ES cell-derived neurons of forebrain identity were isolated by magnetic sorting, cultured for 7 days and transduced with either Nurr1 or eGFP lentivirus. After an additional 12 h in culture, mRNA was isolated and subjected to microarray analysis.
Project description:The orphan nuclear receptor Nurr1 has been shown to be critical for the development of ventral midbrain dopaminergic neurons. Consequently, the development of ES cells overexpressing Nurr1 has raised hope for the development of cell replacement therapies for Parkinson's Disease to replace degenerated dopaminergic neurons. However, the molecular consequences of Nurr1 on gene expression in these cells remain unknown. To address this, stable, clonal, c17.2 neural stem cell lines were established that overexpressed the orphan nuclear receptor Nurr1 (clone 42 & clone 48) or parental control cell line (puroB & puroD, respectively). Keywords: genetic modification
Project description:Lineage-specific transcription factors, which drive cellular identity during embryogenesis, have been shown to convert cell fate when express ectopically in heterologous cells. Herein, we screened the key molecular factors governing the dopaminergic neuronal specification during brain development for their ability to generate similar neurons directly from mouse and human fibroblasts. Remarkably, we found a minimal set of three factors Mash1, Nurr1 and Lmx1a/b able to elicit such cellular reprogramming. Molecular and transcriptome studies showed reprogrammed DA neurons to faithfully recapitulate gene expression of their brain homolog cells while lacking expression of other catecholaminergic neuronal types. Induced neurons showed spontaneous electrical activity organized in regular spikes consistent with the pacemaker activity featured by brain DA neurons. The three factors were able to elicit DA neuronal conversion in human fibroblasts from prenatal or adult fibroblasts of healthy donors and a Parkinson’s disease patient. Generation of DA induced neurons from somatic cells might have significant implications in studies of neural development, disease in vitro modeling and cell replacement therapies. We infected mouse embryonic fibroblasts (MEFs) isolated from TH-GFP knock-in mice embryos at E14.5, with lentiviruses expressing the three dopaminergic transcription factors Ascl1, Lmx1a and Nurr1. TH-GFP MEFs infected (Ind) by a pool of the three previously mentioned dopaminergic lentiviruses were shifted in a neuronal medium for 12 days and sorted for GFP-positive cells. Thus we extracted mRNA from Ind-GFP-positive cells and compared them to not infetced (NI) cells by means of RNA-microarray analysis.
Project description:The orphan nuclear receptor Nurr1 has been shown to be critical for the development of ventral midbrain dopaminergic neurons. Consequently, the development of ES cells overexpressing Nurr1 has raised hope for the development of cell replacement therapies for Parkinson's Disease to replace degenerated dopaminergic neurons. However, the molecular consequences of Nurr1 on gene expression in these cells remain unknown. To address this, stable, clonal, c17.2 neural stem cell lines were established that overexpressed the orphan nuclear receptor Nurr1 (clone 42 & clone 48) or parental control cell line (puroB & puroD, respectively). Experiment Overall Design: Stable neural stem cell lines were grown in proliferating conditions and matched for further microarray analysis based on their similar proliferation rates: Experiment Overall Design: clone 42(c42) vs. puroB(pB) Experiment Overall Design: clone 42(c48) vs. puroD(pD)
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.