Project description:MENX is a rat multiple endocrine neoplasia syndrome caused by a homozygous mutation of the Cdkn1b gene, encoding p27Kip1. Affected rats develop adrenomedullary hyperplasia which progresses to pheochromocytoma with time (incidence 100%), and to extra-adrenal pheochromocytoma (paraganglioma) (68%). We here report that hyperplasia and tumor have similar gene expression profiles, suggesting an early determination of the tumorigenic signature. Overexpressed genes in rat adrenal lesions are especially enriched in development/differentiation-associated genes.
Project description:Male Sprague-Dawley rats were used to establish exhausted-exercise model by motorized rodent treadmill. Yu-Ping-Feng-San at doses of 2.18 g/kg was administrated by gavage before exercise training for 10 consecutive days. Quantitative proteomics was performed for assessing the related mechanism of Yu-Ping-Feng-San.
Project description:Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma [adrenal]
Project description:Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma [thyroid]
Project description:Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma [pituitary]
Project description:Analysis of LBNF1 rat testes from controls, containing both somatic and all germ cell types and from irradiated rats in which all cells germ cells except type A spermatgogonia are eliminated. Results provide insight into distinguishing germ and somatic cell genes and identification of somatic cell genes that are upregulated after irradiation.
Project description:Few studies have assessed the patterns of parasite populations of rodents over a longitudinal gradient in Chile. In this work, the gastrointestinal helminthic fauna of invasive rodents in Chile was examined to assess the association between their presence/absence and abundance with latitude, host sex, and host body condition, and to assess the coexistence and correlation of the abundance between parasite species. Rodents were obtained from 20 localities between 33 and 43°S. Helminths were extracted from the gastrointestinal tract and identified morphologically. Overall, 13 helminth taxa were obtained. The most frequently identified parasite species was Heterakis spumosa, and the most abundant was Syphacia muris, while Physaloptera sp. was the most widely distributed. No locality presented with a coexistence that was different from that expected by chance, while the abundance of five helminthic species correlated with the abundance of another in at least one locality, most likely due to co-infection rather than interaction. Host sex was associated with parasite presence or abundance, and female sex-biased parasitism was notably observed in all cases. Body condition and latitude presented either a positive or negative association with the presence or abundance of parasites depending on the species. It is notable that the likely native Physaloptera sp. is widely distributed among invasive rodents. Further, gravid females were found, suggesting spillback of this species to the native fauna. The low frequency and abundance of highly zoonotic hymenolepid species suggest that rodents are of low concern regarding gastrointestinal zoonotic helminths.
Project description:Living organisms are intricate systems with dynamic internal processes. Their RNA, protein, and metabolite levels fluctuate in response to variations in health and environmental conditions. Among these, RNA expression is particularly accessible for comprehensive analysis, thanks to the evolution of high throughput sequencing technologies in recent years. This progress has enabled researchers to identify unique RNA patterns associated with various diseases, as well as to develop predictive and prognostic biomarkers for therapy response. Such cross-sectional studies allow for the identification of differentially expressed genes (DEGs) between groups, but they have limitations. Specifically, they often fail to capture the temporal changes in gene expression following individual perturbations and may lead to significant false discoveries due to inherent noise in RNA sequencing sample preparation and data collection. To address these challenges, our study hypothesized that frequent, longitudinal RNA sequencing (RNAseq) analysis of blood samples could offer a more profound understanding of the temporal dynamics of gene expression in response to drug interventions, while also enhancing the accuracy of identifying genes influenced by these drugs. In this research, we conducted RNAseq on 829 blood samples collected from 84 Sprague-Dawley lab rats. Excluding the control group, each rat was administered one of four different compounds known for liver toxicity: tetracycline, isoniazid, valproate, and carbon tetrachloride. We developed specialized bioinformatics tools to pinpoint genes that exhibit temporal variation in response to these treatments.