Project description:In Arabidopsis thaliana, four different DICER-LIKE (DCL) proteins have distinct, but partially overlapping functions in the biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs) from longer, non-coding precursor RNAs. To analyze the impact of different components of the small RNA (sRNA) biogenesis machinery on the transcriptome, we subjected dcl and other mutants impaired in sRNA biogenesis to whole-genome tiling array analysis. We compared both protein-coding genes and noncoding transcripts, including most pri-miRNAs, in two tissues and several stress conditions. We discovered distinct effects of dcl1, hyl1 and se mutations on the transcriptome, as well as a number of common genes affected in dcl1 and dcl2 dcl3 dcl4 triple mutants. Our results furthermore suggest that the DCL1 is not only involved in miRNA action, but can also contribute to silencing of certain transposons, apparently through an effect on DNA methylation. Together, our findings contribute to the knowledge of both specialization and overlap between different RNA silencing pathways.
Project description:Small RNA sequences from Arabidopsis thaliana Col-0 inflorescence tissues of three biological replicates. The data were analyzed to identify non-templated nucleotides in Arabidopsis small RNAs.
Project description:Small RNA diversity and function has been widely characterized in various tissues of the sporophytic generation of the angiosperm model Arabidopsis thaliana. In contrast, there is limited knowledge about small RNA diversity and their roles in developing male gametophytes. We thus carried out small RNA sequencing on RNA isolated from four stages of developing Arabidopsis thaliana pollen.
Project description:A silencing signal in plants with an RNA specificity determinant moves through plasmodesmata and the phloem. To identify the mobile RNA we grafted Arabidopsis thaliana shoots to roots that would be a recipient for the silencing signal. Using high throughput sequencing as a sensitive detection method and mutants to block small RNA (sRNA) biogenesis in either source or recipient tissue, we detected endogenous and transgene specific sRNA that moved across the graft union. Surprisingly we found that the mobile endogenous sRNAs account for a substantial proportion of the sRNA in roots and we provide evidence that 24nt mobile sRNAs direct epigenetic modifications in the genome of the recipient cells. Mobile sRNA thus represents a mechanism for transmitting the specification of epigenetic modification and could affect genome defence and responses to external stimuli that have persistent effects in plants. Keywords: Small RNA Analysis, Epigenetics