Project description:The Arabidopsis genome contains a highly complex and abundant population of small RNAs, and many of the endogenous siRNAs are dependent on RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) for their biogenesis. By analyzing an rdr2 loss-of-function mutant using two different parallel sequencing technologies, MPSS and 454, we characterized the complement of miRNAs expressed in Arabidopsis inflorescence to considerable depth. Nearly all known miRNAs were enriched in this mutant and we identified 13 new miRNAs, all of which were relatively low abundance and constitute new families. Trans-acting siRNAs (ta-siRNAs) were even more highly enriched. Computational and gel blot analyses suggested that the minimal number of miRNAs in Arabidopsis is approximately 155. The size profile of small RNAs in rdr2 reflected enrichment of 21-nt miRNAs and other classes of siRNAs like ta-siRNAs, and a significant reduction in 24-nt heterochromatic siRNAs. Other classes of small RNAs were found to be RDR2-independent, particularly those derived from long inverted repeats and a subset of tandem repeats. The small RNA populations in other Arabidopsis small RNA biogenesis mutants were also examined; a dcl2/3/4 triple mutant showed a similar pattern to rdr2, whereas dcl1-7 and rdr6 showed reductions in miRNAs and ta-siRNAs consistent with their activities in the biogenesis of these types of small RNAs. Deep sequencing of mutants provides a genetic approach for the dissection and characterization of diverse small RNA populations and the identification of low abundance miRNAs. Keywords: small RNA sequences generated by 454 sequencing
Project description:In Arabidopsis thaliana, four different DICER-LIKE (DCL) proteins have distinct, but partially overlapping functions in the biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs) from longer, non-coding precursor RNAs. To analyze the impact of different components of the small RNA (sRNA) biogenesis machinery on the transcriptome, we subjected dcl and other mutants impaired in sRNA biogenesis to whole-genome tiling array analysis. We compared both protein-coding genes and noncoding transcripts, including most pri-miRNAs, in two tissues and several stress conditions. We discovered distinct effects of dcl1, hyl1 and se mutations on the transcriptome, as well as a number of common genes affected in dcl1 and dcl2 dcl3 dcl4 triple mutants. Our results furthermore suggest that the DCL1 is not only involved in miRNA action, but can also contribute to silencing of certain transposons, apparently through an effect on DNA methylation. Together, our findings contribute to the knowledge of both specialization and overlap between different RNA silencing pathways.
Project description:Using a crucifer-infecting strain of Tobacco Mosaic Virus (TMV-Cg) and Arabidopsis thaliana as a model system, we analyzed the viral small RNA profile in wild-type plants as well as rdr mutants by applying small RNA deep sequencing technology. Over 100,000 TMV-Cg-specific small RNA reads, mostly of 21- (78.4%) and 22-nucleotide (12.9%) in size and originating predominately (79.9%) from the genomic sense RNA strand, were captured at an early infection stage, yielding the first high-resolution small RNA map for a plant virus. The TMV-Cg genome harbored multiple, highly reproducible small RNA-generating hot spots that corresponded to regions with no apparent local hairpin-forming capacity. Significantly, both the rdr1 and rdr6 mutants exhibited globally reduced levels of viral small RNA production as well as reduced strand bias in viral small RNA population, revealing an important role for these host RDRs in viral siRNA biogenesis. In addition, an informatics analysis showed that a large set of host genes could be potentially targeted by TMV-Cg-derived siRNAs for posttranscriptional silencing, raising the interesting possibility for a hidden layer of widespread virus-host interactions that may contribute to viral pathogenicity and host specificity.
Project description:A silencing signal in plants with an RNA specificity determinant moves through plasmodesmata and the phloem. To identify the mobile RNA we grafted Arabidopsis thaliana shoots to roots that would be a recipient for the silencing signal. Using high throughput sequencing as a sensitive detection method and mutants to block small RNA (sRNA) biogenesis in either source or recipient tissue, we detected endogenous and transgene specific sRNA that moved across the graft union. Surprisingly we found that the mobile endogenous sRNAs account for a substantial proportion of the sRNA in roots and we provide evidence that 24nt mobile sRNAs direct epigenetic modifications in the genome of the recipient cells. Mobile sRNA thus represents a mechanism for transmitting the specification of epigenetic modification and could affect genome defence and responses to external stimuli that have persistent effects in plants. Keywords: Small RNA Analysis, Epigenetics