Project description:Chinese and Philippine strains of the blood fluke Schistosoma japonicum present clear and distinctive phenotypes in areas of fecundity, pathology, drug sensitivity and immunology. Despite these differences large scale sequencing efforts have focused solely on Chinese mainland strain of the parasite. We have undertaken a comparative genomic hybridisation (CGH) approach to highlight some of the structural differences in the genome of two of the major geographical isolates of S. japonicum. We identified seven distinct regions of the S. japonicum genome that present differential CGH between Chinese and Philippine strains of the blood fluke Schistosoma japonicum, representing either deletion or duplication regions in the Philippine strain. Within these regions, genes that may be related to phenotypical differences are identified and discussed.
Project description:Chinese and Philippine strains of the blood fluke Schistosoma japonicum present clear and distinctive phenotypes in areas of fecundity, pathology, drug sensitivity and immunology. Despite these differences large scale sequencing efforts have focused solely on Chinese mainland strain of the parasite. We have undertaken a comparative genomic hybridisation (CGH) approach to highlight some of the structural differences in the genome of two of the major geographical isolates of S. japonicum. We identified seven distinct regions of the S. japonicum genome that present differential CGH between Chinese and Philippine strains of the blood fluke Schistosoma japonicum, representing either deletion or duplication regions in the Philippine strain. Within these regions, genes that may be related to phenotypical differences are identified and discussed. Genomic DNA was isolated from adult (7 week post cercarial challenge) Schistosoma japonicum Chinese and Philippine isolates and separate maleand femalesamples comparatively hybridised on an Agilent customn designed oligo microarray.
Project description:Schistosome parasites lay up to a thousand eggs per day inside the veins of their mammalian hosts. The immature eggs deposited by females against endothelia of venules will embryonate within days. Approximately 30% of the eggs will migrate to the lumen of the intestine to continue the parasite life cycle. Many eggs, however, are trapped in the liver and intestine causing the main pathology associated with schistosomiasis mansoni and japonica, the liver granulomatous response. Excretory/Secretory egg proteins drive much of egg-induced pathogenesis of schistosomiasis mansoni, and Schistosoma japonicum induce a markedly distinct granulomatous response to that of S. mansoni.
Project description:Background: Schistosoma japonicum (S. japonicum) is a parasitic flatworm that is the aetiological agent of human schistosomiasis, an important cause of hepatic fibrosis. Schistosomiasis-induced hepatic fibrosis is a consequence of the highly fibrogenic nature of egg-induced granulomatuous lesions, the main pathogenic factor of schistosomiasis. Although global awareness of the association between schistosomiasis-indued hepatic fibrosis and s. japonicum infection is increasing, little is known about the molecular differences associated with rapid progression to schistosomiasis in cirrhotic patients. Methods: We systematically used data-independent acquisition (DIA)-based liquid chromatography-mass spectrometry to identify differentially expressed proteins in serum samples from patients with advanced S. japonicum-induced hepatic fibrosis. Results: On the basis of our analysis, we identified 1,144 proteins, among which 66 were differentially expressed between the healthy control and SHF-F2 groups and 214 were differentially expressed between the SHF-F2 and SHF-F4 groups (up- or downregulation of at least 1.5-fold in serum samples). Furthermore, our results indicated that two selected proteins (C1QA and CFD) are potential biomarkers for distinguishing patients with SHF-F2 and SHF-F4 resulting from S. japonicum infection. Conclusions: This report is the first to provide a global proteomic profile of serum samples from patients with advanced S. japonicum-induced hepatic fibrosis. C1QA and CFD are potentially diagnostic markers for patients with SHF-F2 and SHF-F4 resulting from S. japonicum infection, although further large-scale studies are needed. Our DIA-based quantitative proteomic analysis revealed molecular differences among individuals with different stages of advanced S. japonicum-induced hepatic fibrosis and might provide fundamental information for further detailed investigations.
Project description:miRNA profiling of S. japonicum infected mouse plasma comparing control untreated mouse plasma. Schistosomiasis, caused by dioecious flatworms in the genus Schistosoma, is torturing people predominantly in the developing countries. Knowledge on schistosome-host interaction and its parasitism may result in the development of novel strategies for schistosomiasis control. MicroRNAs (miRNAs) are involved in a wide range of biological processes including development, cell proliferation, metabolism ,signal transduction, et al. Circulating miRNAs are not only important biomarker associated the process of pathogenesis in many diseases and also are able to regulate target gene expression in recipient cells, just like hormones. In the present study, we investigated circulating miRNA profile associated with S. japonicum infection in mice using miRNA microarray.
Project description:Schistosomiasis japonica remains a significant public health problem in China and Southeast Asian countries. The most typical and serious outcome of the chronic oriental schistosomiasis is the progressive granuloma and fibrosis in the host liver, which has been a major medical challenge. However, the molecular mechanisms that underlie the hepatic pathogenesis induced by schistosomal egg deposition have not yet been well-defined. Using microarrays, we quantified the temporal gene expression profiles in the liver of Schistosoma japonicum-infected BALB/c mice at day 15, 30, and 45 post infection (pi) with that from uninfected mice as controls. Meanwhile, microRNA expression profiles from the same samples were decoded by parallel solexa sequencing. Gene expression alternation associated with liver damage was observed even at early stage of infection (e.g., pi 15), which became more magnificent onset of egg deposition within the liver tissue. Up-regulated genes were dominantly associated with inflammatory infiltration of liver during S. japonicum infection, whereas down-regulated genes primarily led to the hepatic functional disorders. More than 130 miRNAs were differentially expressed during S. japonicum infection, and dynamic miRNA-gene co-expression network has been constructed during the development of hepatic pathology.
Project description:Alternative splicing is a molecular process that contributes greatly to the diversification of proteome and to gene functions. Understanding the mechanisms of stage-specific alternative splicing can provide a better understanding of the development of eukaryotes and the functions of different genes. Schistosoma japonicum is an infectious blood-dwelling trematode with a complex lifecycle that causes the tropical disease schistosomiasis. In this study, we analyzed the transcriptome of Schistosoma japonicum to discover alternative splicing events in this parasite, by applying RNA-seq to cDNA library of adults and schistosomula. Results were validated by RT-PCR and sequencing. We found 11,623 alternative splicing events among 7,099 protein encoding genes and average proportion of alternative splicing events per gene was 42.14%. We showed that exon skip is the most common type of alternative splicing events as found in high eukaryotes, whereas intron retention is the least common alternative splicing type.