Project description:Renal infiltration with mononuclear cells is associated with poor prognosis in SLE. A renal macrophage/dendritic cell signature is associated with onset of nephritis in NZB/W mice and immune modulating therapies can reverse this signature and the associated renal damage despite ongoing immune complex deposition. Our findings suggest that mononuclear phagocytes with an aberrant activation profile contribute to tissue damage in lupus nephritis by mediating both local inflammation and excessive tissue remodeling. We used microarrays to analyze the gene expression of renal isolated macrophages at early stage of lupus (young) during lupus nephritis (sick) and after induction of remission (Rem) NZB/W F4/80hi mouse cells were isolated using flow cytometry; RNA from cells (young, sick and after complete remission) was extracted and processed for hybridization on Affymetrix microarrays.
Project description:Renal infiltration with mononuclear cells is associated with poor prognosis in SLE. A renal macrophage/dendritic cell signature is associated with onset of nephritis in NZB/W mice and immune modulating therapies can reverse this signature and the associated renal damage despite ongoing immune complex deposition. Our findings suggest that mononuclear phagocytes with an aberrant activation profile contribute to tissue damage in lupus nephritis by mediating both local inflammation and excessive tissue remodeling. We used microarrays to analyze the gene expression of renal isolated macrophages at early stage of lupus (young) during lupus nephritis (sick) and after induction of remission (Rem)
Project description:Identification of genes responsible for formation and function of vasculature-associated lymphoid tissue in lupus nephritis mouse model
Project description:NZB/WF1 female mice spontaneously develop autoimmune lupus nephritis. Expression profiling of kidney tissue from (a) 12 week NZB/W F1 female mice defined as asymptomatic for lupus nephritis, (b) 36 and 42 week NZB/W F1 female mice defined as diseased/symptomatic for lupus nephritis and (c) 36 and 42 week NZB/W F1 female mice that are diseased/symptomatic for lupus nephritis and treated with Sirolimus was carried out. The goal of the study was to identify genes associated with lupus nephritis and modulated by Sirolimus, an inhibitor of mTOR. In addition, lupus nephritis genes resistant to Sirolimus therapy were also identfied This series of samples comprises of kidney tissue from (a) 12 week old NZB/W F1 female mice defined as asymptomatic for lupus nephritis (N=4), (b) 36 (N=3) and 42 week (N=3) old NZB/W F1 female mice defined as diseased/symptomatic for lupus nephritis and (c) 36 (N=3)and 42 (N=3) week old NZB/W F1 female mice that are asymptomatic for lupus nephritis on treatment with Sirolimus
Project description:NZB/WF1 female mice spontaneously develop autoimmune lupus nephritis. Expression profiling of kidney tissue from (a) 12 week NZB/W F1 female mice defined as asymptomatic for lupus nephritis, (b) 36 and 42 week NZB/W F1 female mice defined as diseased/symptomatic for lupus nephritis and (c) 36 and 42 week NZB/W F1 female mice that are diseased/symptomatic for lupus nephritis and treated with Sirolimus was carried out. The goal of the study was to identify genes associated with lupus nephritis and modulated by Sirolimus, an inhibitor of mTOR. In addition, lupus nephritis genes resistant to Sirolimus therapy were also identfied
Project description:Membranous lupus nephritis is a frequent cause of nephrotic syndrome in patients with systemic lupus erythematosus. Unlike phospholipase A2 receptor or thrombospondin type 1 domain containing 7A-associated membranous nephropathy, where known antibodies can be detected within sera by indirect immunofluorescence and/or enzyme-linked immunosorbent assay, it is not possible to monitor disease activity in membranous lupus nephritis where the target autoantigens are mostly unknown. Determination of the target autoantigen has diagnostic significance, informs prognosis, and allows for non-invasive monitoring of disease activity in serum. We utilized mass spectrometry for antigen discovery of laser capture microdissected glomeruli from formalin-fixed paraffin embedded tissue and tissue IgG immunoprecipitation studies from frozen kidney biopsy tissue. We identified neural cell adhesion molecule 1 (NCAM1) to be a target antigen in membranous lupus nephritis and within rare cases of primary membranous nephropathy. The prevalence of NCAM1-associated membranous neuropathy was 5.7% of cases of membranous lupus nephritis. NCAM1 co-localizes with IgG within glomerular immune deposits. Additionally, serum from NCAM1 patients showed reactivity to NCAM1 recombinant protein. The presence of anti-NCAM1 antibodies in sera could allow for non-invasive monitoring of the disease. We propose that NCAM1 is a target autoantigen in a subset of patients with membranous lupus nephritis. Future studies are needed to determine whether anti-NCAM1 antibody levels correlate with disease activity or response to therapy.
Project description:Lupus nephritis is a serious complication of systemic lupus erythematosus, mediated by IgG immune complex (IC) deposition in kidneys, with limited treatment options. Kidney macrophages are critical tissue sentinels that express IgG-binding Fcγ receptors (FcγRs), with previous studies identifying prenatally seeded resident macrophages as major IC responders. Using single-cell transcriptomic and spatial analyses in murine and human lupus nephritis, we sought to understand macrophage heterogeneity and subset-specific contributions in disease. In lupus nephritis, the cell fate trajectories of tissue-resident (TrMac) and monocyte-derived (MoMac) kidney macrophages were perturbed, with disease-associated transcriptional states indicating distinct pathogenic roles for TrMac and MoMac subsets. Lupus nephritis–associated MoMac subsets showed marked induction of FcγR response genes, avidly internalized circulating ICs, and presented IC-opsonized antigen. In contrast, lupus nephritis-associated TrMac subsets demonstrated limited IC uptake, but expressed monocyte chemoattractants, and their depletion attenuated monocyte recruitment to the kidney. TrMacs also produced B cell tissue niche factors, suggesting a role in supporting autoantibody-producing lymphoid aggregates. Extensive similarities were observed with human kidney macrophages, revealing cross-species transcriptional disruption in lupus nephritis. Overall, our study suggests a division of labor in the kidney macrophage response in lupus nephritis, with treatment implications — TrMacs orchestrate leukocyte recruitment while MoMacs take up and present IC antigen.
Project description:raw files associated with manuscript titled 'Discovery and qualification of candidate urinary biomarkers of disease activity in lupus nephritis'