Project description:Transcriptional profiling of mouse spermatogonial stem cells (SSCs) comparing control untreated SSCs with SSCs with exogenous FGF2 withdrawn and FGFR inhibitor SU5402 supplemented (-F+S). Results provide insight into the mechanisms of FGF2-supported in vitro self-renewal of SSCs.
Project description:Transcriptional profiling of mouse spermatogonial stem cells (SSCs) comparing control untreated SSCs with SSCs with exogenous FGF2 withdrawn and FGFR inhibitor SU5402 supplemented (-F+S). Results provide insight into the mechanisms of FGF2-supported in vitro self-renewal of SSCs. Two-condition experiment, SSCs-F+S vs. SSCs. Biological replicates: 4 control replicates, 4 -F+S replicates.
Project description:In vitro and in vivo aging of mouse spermatogonial stem cells alters stem cell function based on quantitative spermatogonial stem cell transplantation analyses. We used microarrays to identify differential gene expression in vitro and in vivo aged spermatogonial stem cells to identify potential causes of observed phenotypic differences in aged spermatogonial stem cell function. Spermatogonial stem cells were isolated from young and serial-transplanted aged mouse donors and cultured for short and long periods. Spermatogonial stem cells were isolated from cultures and subjected to microarray analysis to identify differential gene expression.
Project description:A transcriptome study in mouse hematopoietic stem cells was performed using a sensitive SAGE method, in an attempt to detect medium and low abundant transcripts expressed in these cells. Among a total of 31,380 unique transcript, 17,326 (55%) known genes were detected, 14,054 (45%) low-copy transcripts that have no matches to currently known genes. 3,899 (23%) were alternatively spliced transcripts of the known genes and 3,754 (22%) represent anti-sense transcripts from known genes.