Project description:Analysis of gingival crevicular fluid (GCF) samples may give information of the identity of unattached (planktonic) subgingival bacteria, the 35 forefront candidates for systemic dispersal via ulcerated periodontal pocket epithelium. Our study represents the first one targeting the identity of bacteria in gingival crevicular fluid. Methodology/Principal findings: We determined bacterial species diversity in GCF samples of a group of periodontitis patients and delineated contributing bacterial and host-associated factors. Subgingival paper point (PP) samples from the same sites were taken for comparison. After DNA extraction, 16S rRNA genes were PCR amplified and DNA-DNA hybridization was performed using a microarray for over 300 bacterial species or groups. Altogether 133 species from 41 genera and 8 phyla 45 were detected with 9 to 62 and 18 to 64 species in GCF and PP samples, respectively, 46 per patient. Projection to latent structures by means of partial least squares (PLS) was applied to the multivariate data analysis. PLS regression analysis showed that species of genera including Campylobacter, Selenomonas, Porphyromonas, Catonella, Tannerella, Dialister, Peptostreptococcus, Streptococcus and Eubacterium had significant positive correlations and the number of teeth with low-grade attachment loss a significant negative correlation to species diversity in GCF samples. OPLS/O2PLS discriminant analysis revealed significant positive correlations to GCF sample group membership for species of genera Campylobacter, Leptotrichia, Prevotella, Dialister, Tannerella, Haemophilus, Fusobacterium, Eubacterium, and Actinomyces. Conclusions/Significance: Among a variety of detected species those traditionally classified as Gram-negative anaerobes growing in mature subgingival biofilms were the main predictors for species diversity in GCF samples as well as responsible for distinguishing GCF samples from PP samples. GCF bacteria may provide new prospects for studying dynamic properties of subgingival biofilms. The microbial profiles of GCF and subgingival plaque were analyzed from 17 subjects with periodontal disease.
Project description:Analysis of gingival crevicular fluid (GCF) samples may give information of the identity of unattached (planktonic) subgingival bacteria, the 35 forefront candidates for systemic dispersal via ulcerated periodontal pocket epithelium. Our study represents the first one targeting the identity of bacteria in gingival crevicular fluid. Methodology/Principal findings: We determined bacterial species diversity in GCF samples of a group of periodontitis patients and delineated contributing bacterial and host-associated factors. Subgingival paper point (PP) samples from the same sites were taken for comparison. After DNA extraction, 16S rRNA genes were PCR amplified and DNA-DNA hybridization was performed using a microarray for over 300 bacterial species or groups. Altogether 133 species from 41 genera and 8 phyla 45 were detected with 9 to 62 and 18 to 64 species in GCF and PP samples, respectively, 46 per patient. Projection to latent structures by means of partial least squares (PLS) was applied to the multivariate data analysis. PLS regression analysis showed that species of genera including Campylobacter, Selenomonas, Porphyromonas, Catonella, Tannerella, Dialister, Peptostreptococcus, Streptococcus and Eubacterium had significant positive correlations and the number of teeth with low-grade attachment loss a significant negative correlation to species diversity in GCF samples. OPLS/O2PLS discriminant analysis revealed significant positive correlations to GCF sample group membership for species of genera Campylobacter, Leptotrichia, Prevotella, Dialister, Tannerella, Haemophilus, Fusobacterium, Eubacterium, and Actinomyces. Conclusions/Significance: Among a variety of detected species those traditionally classified as Gram-negative anaerobes growing in mature subgingival biofilms were the main predictors for species diversity in GCF samples as well as responsible for distinguishing GCF samples from PP samples. GCF bacteria may provide new prospects for studying dynamic properties of subgingival biofilms.
Project description:We investigated the association between subgingival bacterial profiles and gene expression patterns in gingival tissues of patients with periodontitis.
Project description:We investigated the association between subgingival bacterial profiles and gene expression patterns in gingival tissues of patients with periodontitis. A total of 120 patients undergoing periodontal surgery contributed with a minimum of two interproximal gingival papillae (range 2-4) from a maxillary posterior. Prior to tissue harvesting, subgingival plaque samples were collected from the mesial and distal aspects of each papilla. Gingival tissue RNA was extracted, reverse-transcribed, labeled, and hybridized with whole-genome microarrays (310 in total)
Project description:The human gingival crevicular fluid proteome and metaproteome of periodontitis are investigated, to shed light on the factors that mediate the host-microbiota interactions in the pathogenesis of periodontitis.
Project description:We profiled miRNAs in gingival crevicular fluid (GCF) by a PCR-based method that yielded quantitative measures of more than 600 miRNAs. We found that miRNA profiles in GCF of periodontitis patients are distinct from those of healthy controls.
Project description:Gingival Crevicular Fluid, a plasma-derived exudate present in the gingival crevice was collected from deciduous, exfoliating and permanent teeth from 20 children (60 samples) with the aim to characterize and quantify by a mass spectrometry based top-down proteomic approach, the peptide/proteins in the fluid and verify possible variations occurring during the exfoliating process. The results obtained confirmed the presence in Gingival Crevicular Fluid of α-Defensins 1-4, Thymosin β4 and Thymosin β10, as described in previous works and revealed the presence of other interesting peptides never described before in Gingival Crevicular Fluid, such as specific fragments of α-1-antitrypsin, α-1-antichymotrypsin, Thymosin β4 and Thymosin β10 fragments, Fibrinopeptide A, Fibrinopeptide B, S100A, LVV Hemorphin-7 (hemoglobin chain β fragment), as well as some other peptides deriving from α and β subunits of hemoglobin. Statistical analysis evidenced different levels in 5 proteins/peptides in the three groups in particular with higher level in exfoliating teeth. Our study demonstrate that an in-depth analysis of a biological fluid like Gingival Crevicular Fluid, present in small amount, can provide useful information for the understanding of different biological processes like teeth eruption.
Project description:In this paper, we first report that EC smoking significantly increases the odds of gingival inflammation. Then, we seek to identify and explain the mechanism that underlies the relationship between EC smoking and gingival inflammation via the oral microbiome. We performed mediation analyses to assess if EC smoking affects the oral microbiome, which in turn affects gingival inflammation. For this, we collected saliva and subgingival samples from EC users and non-users and profiled their microbial compositions via 16S rRNA amplicon sequencing. We then performed α-diversity, β-diversity, and taxonomic differential analyses to survey the disparity in microbial composition between EC users and non-users. We found significant increases in α-diversity in EC users and disparities in β-diversity between EC users and non-users.