Project description:This SuperSeries is composed of the following subset Series: GSE26558: Expression Quantitative Trait Locus (eQTL) Mapping of Stage-specific Gene Expression in Progeny from a type I X III Genetic Cross of Toxoplasma gondii GSE26607: Genomic hybridizations for the parents and progeny of the Toxoplasma gondii I X III genetic cross Refer to individual Series
Project description:Recent advances in high throughput sequencing methodologies allow the opportunity to probe in depth the transcriptomes of organisms including N. caninum and Toxoplasma gondii. In this project, we are using Illumina sequencing technology to analyze the transcriptome (RNA-Seq) of experimentally accessible stages (e.g. tachyzoites at different times points) of T. gondii VEG strain. The aim is to make comparative transcriptional landscape maps of Neospora and Toxoplasma at different time points at different life cycle stages and compare levels of expression of orthologous genes in these two organisms.
Project description:This SuperSeries is composed of the following subset Series: GSE11437: Expression QTL mapping of Toxoplasma gondii genes, Bradyzoite array GSE11514: Expression QTL mapping of Toxoplasma gondii genes, Tachyzoite array Keywords: SuperSeries Refer to individual Series
Project description:Toxoplasma gondii is an intracellular parasite with a significant impact on human health, especially in cases where individuals are immunocompromised (e.g., due to HIV/AIDS). In Europe and North America only a few clonal genotypes appear to be responsible for the vast majority of Toxoplasma infections, and these clonotypes have been intensely studied to identify strain-specific phenotypes that may play a role in the manifestation of more severe disease. To identify and genetically map strain-specific differences in gene expression, we have carried out expression quantitative trait locus (eQTL) analysis on Toxoplasma gene expression phenotypes using spotted cDNA microarrays. This led to the identification of 16 Toxoplasma genes that had significant and mappable strain-specific variation in hybridization intensity. While the analysis should identify both cis and trans-mapping hybridization profiles, we only identified loci with strain-specific hybridization differences that are most likely due to differences in the locus itself (i.e., cis-mapping). Interestingly, a larger number of these cis-mapping genes than would be expected by chance encode either confirmed or predicted secreted proteins, many of which are known to localize to the specialized secretory organelles characteristic of members of the phylum Apicomplexa. For 6 of the cis-mapping loci we determined if the strain-specific hybridization differences were due to true transcriptional differences or rather strain-specific differences in hybridization efficiency because of extreme polymorphism and/or deletion, and we found examples of both scenarios. Keywords: eQTL mapping; virulence; Toxoplasma gondii 17 F1 progeny from a cross between a type II parent (PDS) and a type III parent (CTG) were used in RNA hybridizations to identify cis and trans-mapping loci regulating gene expression
Project description:Toxoplasma gondii is an intracellular parasite with a significant impact on human health, especially in cases where individuals are immunocompromised (e.g., due to HIV/AIDS). In Europe and North America only a few clonal genotypes appear to be responsible for the vast majority of Toxoplasma infections, and these clonotypes have been intensely studied to identify strain-specific phenotypes that may play a role in the manifestation of more severe disease. To identify and genetically map strain-specific differences in gene expression, we have carried out expression quantitative trait locus (eQTL) analysis on Toxoplasma gene expression phenotypes using spotted cDNA microarrays. This led to the identification of 16 Toxoplasma genes that had significant and mappable strain-specific variation in hybridization intensity. While the analysis should identify both cis and trans-mapping hybridization profiles, we only identified loci with strain-specific hybridization differences that are most likely due to differences in the locus itself (i.e., cis-mapping). Interestingly, a larger number of these cis-mapping genes than would be expected by chance encode either confirmed or predicted secreted proteins, many of which are known to localize to the specialized secretory organelles characteristic of members of the phylum Apicomplexa. For 6 of the cis-mapping loci we determined if the strain-specific hybridization differences were due to true transcriptional differences or rather strain-specific differences in hybridization efficiency because of extreme polymorphism and/or deletion, and we found examples of both scenarios. Keywords: eQTL mapping; virulence; Toxoplasma gondii 19 F1 progeny from a cross between a type II parent (PDS) and a type III parent (CTG) were used in RNA hybridizations to identify cis and trans-mapping loci regulating gene expression
Project description:Expression profile microarray of human foreskin fibroblast cell comparing control untreated HFF cell with HFF cell infected with ME49 strain.Study on Toxoplasma gondii infection of HFF cell LncRNAs expression, for further studies on the differential exprssion of LncRNAs in HFF cell against the infection of Toxoplasma gondii research provide the basic function.