Project description:This SuperSeries is composed of the following subset Series: GSE22127: Expression profiling of small intestine lamina propria dendritic cells GSE22128: Expression profiling of splenic dendritic cells Dendritic cells play a vital role in initiating robust immunity against pathogens as well as maintaining immunological tolerance to self antigens, food antigens and intestinal commensals. However, the intracellular signaling networks that program DCs to become tolerogenic are largely unknown. To address this, we analyzed gene expression profiles using microarray analysis of purified intestinal lamina propria DCs (CD11c+ CD11b+ DCs and CD11c+ CD11b- DCs) and compared it to splenic DCs (CD11c+ DC), from mice. We sought to determine the unique genetic profile of small intestine lamina propria CD11c+ cells compared to splenic CD11c+ cells. We performed a meta-analysis using the expression profiles of Intestinal lamina propria CD11c+ CD11b+ DCs (GSM550122), Intestinal lamina propria CD11c+ CD11b- DCs (GSM550121) and Splenic CD11c+ DCs (GSM550126). This study combined and re-normalized the microarray data from GSE22127 and GSE22128 studies. Refer to individual Series for additional details
Project description:Dendritic cells play a vital role in initiating robust immunity against pathogens as well as maintaining immunological tolerance to self antigens, food antigens and intestinal commensals. However, the intracellular signaling networks that program DCs to become tolerogenic are largely unknown. To address this, we analyzed gene expression profiles using microarray analysis of purified intestinal lamina propria DCs (CD11c+ CD11b+ DCs and CD11c+ CD11b- DCs) from mice. Keywords: Lamina propria, DCs, cell type comparison We sought to determine the expression profile of small intestine lamina propria CD11c+ cells. RNA was extracted from DCs sorted from mouse small intestine (CD11c+CD11b- and CD11c+CD11b+ cells) and hybridized on Affymetrix microarrays.
Project description:The intestinal immune system must elicit robust immunity against harmful pathogens but restrain immune responses directed against commensal microbes and dietary antigens. The mechanisms that maintain this dichotomy are poorly understood. Here we describe a population of CD11b+F4/80+CD11câ?? macrophages in the lamina propria (LP) that express several anti-inflammatory molecules including interleukin 10 (IL-10), but little or no pro-inflammatory cytokines, even upon stimulation with Toll-like receptor (TLR) ligands. These macrophages induced, in a manner dependent on IL-10, retinoic acid and exogenous transforming growth factor-β, differentiation of FoxP3+ regulatory T cells. In contrast, LP CD11b+ dendritic cells elicited IL-17 production. This IL-17 production was suppressed by LP macrophages, indicating that a dynamic interplay between these subsets may influence the balance between immune activation and tolerance. Splenic or small intestine lamina propria CD11b+11c- cells were isolated for RNA extraction and hybridization on Affymetrix microarrays. We sought to determine the unique genetic profile of small intestine lamina propria CD11b+11c- cells. Experiment Overall Design: 4 samples analyzed, 2 spleen and 2 intestine
Project description:The intestinal immune system must elicit robust immunity against harmful pathogens but restrain immune responses directed against commensal microbes and dietary antigens. The mechanisms that maintain this dichotomy are poorly understood. Here we describe a population of CD11b+F4/80+CD11c– macrophages in the lamina propria (LP) that express several anti-inflammatory molecules including interleukin 10 (IL-10), but little or no pro-inflammatory cytokines, even upon stimulation with Toll-like receptor (TLR) ligands. These macrophages induced, in a manner dependent on IL-10, retinoic acid and exogenous transforming growth factor-β, differentiation of FoxP3+ regulatory T cells. In contrast, LP CD11b+ dendritic cells elicited IL-17 production. This IL-17 production was suppressed by LP macrophages, indicating that a dynamic interplay between these subsets may influence the balance between immune activation and tolerance. Splenic or small intestine lamina propria CD11b+11c- cells were isolated for RNA extraction and hybridization on Affymetrix microarrays. We sought to determine the unique genetic profile of small intestine lamina propria CD11b+11c- cells. Keywords: cell type comparison
Project description:Plasma cell gene expression is driven both by isotype and tissue location. In this series we examine gene expression of bone marrow IgA, IgM and IgG plasma cells as well as IgA plasma cells from small intestine lamina propria. To validate tissue specific gene expression we also include gene expression from lamina propria IgA-/- plasma cells. All plasma cell samples are from Blimp1+/GFP reporter animals and splenic follicular and marginal zone B cell gene expression have been added as reference populations.
Project description:Purpose: The goals of this study are to compare mRNAs expressed by Th17 cells and ILC3s in small intestine of lamina propria of mice. Methods: Small intestine were digested with collagenase, dispase, and DNase. Percoll enriched lamina propria Th17 and ILCs sorted by BD ARIA II. Total RNA were harvested and sequencing were performe. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) and TopHat followed by CuffDiff. qRT–PCR validation was performed using SYBR Green assays. Results: Small intestine Th17 cells and ILCs exhibit differential gene expression profiles.
Project description:The colonic lamina propria contains a distinct population of Foxp3+ T regulatory cells (Tregs) that modulate responses to commensal microbes. Analysis of gene expression revealed that the transcriptome of colonic Tregs is distinct from splenic and other tissue Tregs. Rorγ and Helios in colonic Tregs mark distinct populations: Rorγ+Helios- or Rorγ-Helios+ Tregs. We uncovered an unanticipated role for Rorγ, a transcription factor generally considered to be antagonistic to Foxp3. Rorγ in colonic Tregs accounts for a small but specific part of the colon-specific Treg signature. (1) Total colonic and splenic Foxp3+ Treg comparison: Lymphocytes were isolated from colonic lamina propria and spleens of Foxp3-ires-GFP mice, where GFP reports Foxp3 expression. TCRb+CD4+GFP+ cells were double sorted into Trizol. (2) Colonic Rorγ+ and Rorγ- Treg comparison: Foxp3-ires-Thy1.1 reporter mice were crossed to Rorc-GFP reporter mice to generate mice that report both Foxp3 and Rorγ expression. Rorγ+Foxp3+ Tregs (TCRb+CD4+Thy1.1+GFP+) and Rorγ-Foxp3+ Tregs (TCRb+CD4+Thy1.1+GFP-) from colonic lamina propria were double sorted into Trizol.To reduce variability and increase cell number, cells from multiple mice were pooled for sorting and at least three replicates were generated for all groups. RNA from 1.5-3.0 x104 cells was amplified, labeled and hybridized to Affymetrix Mouse Gene 1.0 ST Arrays.