Project description:This SuperSeries is composed of the following subset Series: GSE22127: Expression profiling of small intestine lamina propria dendritic cells GSE22128: Expression profiling of splenic dendritic cells Dendritic cells play a vital role in initiating robust immunity against pathogens as well as maintaining immunological tolerance to self antigens, food antigens and intestinal commensals. However, the intracellular signaling networks that program DCs to become tolerogenic are largely unknown. To address this, we analyzed gene expression profiles using microarray analysis of purified intestinal lamina propria DCs (CD11c+ CD11b+ DCs and CD11c+ CD11b- DCs) and compared it to splenic DCs (CD11c+ DC), from mice. We sought to determine the unique genetic profile of small intestine lamina propria CD11c+ cells compared to splenic CD11c+ cells. We performed a meta-analysis using the expression profiles of Intestinal lamina propria CD11c+ CD11b+ DCs (GSM550122), Intestinal lamina propria CD11c+ CD11b- DCs (GSM550121) and Splenic CD11c+ DCs (GSM550126). This study combined and re-normalized the microarray data from GSE22127 and GSE22128 studies. Refer to individual Series for additional details
Project description:Dendritic cells play a vital role in initiating robust immunity against pathogens as well as maintaining immunological tolerance to self antigens, food antigens and intestinal commensals. However, the intracellular signaling networks that program DCs to become tolerogenic are largely unknown. To address this, we analyzed gene expression profiles using microarray analysis of purified intestinal lamina propria DCs (CD11c+ CD11b+ DCs and CD11c+ CD11b- DCs) from mice. Keywords: Lamina propria, DCs, cell type comparison We sought to determine the expression profile of small intestine lamina propria CD11c+ cells. RNA was extracted from DCs sorted from mouse small intestine (CD11c+CD11b- and CD11c+CD11b+ cells) and hybridized on Affymetrix microarrays.
Project description:The intestinal immune system must elicit robust immunity against harmful pathogens but restrain immune responses directed against commensal microbes and dietary antigens. The mechanisms that maintain this dichotomy are poorly understood. Here we describe a population of CD11b+F4/80+CD11câ?? macrophages in the lamina propria (LP) that express several anti-inflammatory molecules including interleukin 10 (IL-10), but little or no pro-inflammatory cytokines, even upon stimulation with Toll-like receptor (TLR) ligands. These macrophages induced, in a manner dependent on IL-10, retinoic acid and exogenous transforming growth factor-β, differentiation of FoxP3+ regulatory T cells. In contrast, LP CD11b+ dendritic cells elicited IL-17 production. This IL-17 production was suppressed by LP macrophages, indicating that a dynamic interplay between these subsets may influence the balance between immune activation and tolerance. Splenic or small intestine lamina propria CD11b+11c- cells were isolated for RNA extraction and hybridization on Affymetrix microarrays. We sought to determine the unique genetic profile of small intestine lamina propria CD11b+11c- cells. Experiment Overall Design: 4 samples analyzed, 2 spleen and 2 intestine
Project description:Purpose: The goals of this study are to compare mRNAs expressed by Th17 cells and ILC3s in small intestine of lamina propria of mice. Methods: Small intestine were digested with collagenase, dispase, and DNase. Percoll enriched lamina propria Th17 and ILCs sorted by BD ARIA II. Total RNA were harvested and sequencing were performe. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) and TopHat followed by CuffDiff. qRT–PCR validation was performed using SYBR Green assays. Results: Small intestine Th17 cells and ILCs exhibit differential gene expression profiles.
Project description:To further development of our gene expression approach to CD300a deficiency on dendritic cells (DCs) in colonic lamina propria, we have employed whole genome microarray expression profiling as a discovery platform to identify genes with the potential to distinguish CD300a deficiency on DCs in colonic lamina propria from those of WT mice. Colonic lamina propria DCs were obtained by cell sorter from WT and CD300a deficient mice raised under SPF and GF condition. Expression of Ifnb1 was significantly higher in CD300a deficient DCs, quantified in the same RNA samples by real-time PCR. Gene expression in WT and CD300a colonic lamina propria DCs raised under SPF and GF conditions were measured. Colonic lamina propria cells were obtained from 5 mice in each conditions. Takara-Bio