Project description:To evaluate the roles of gene regulation in Oryza sativa leaf, dynamic profiles of transcriptome were investigated in Oryza sativa L. spp. indica with different treatments, the aerial tissues of one-month-old plants from four different areas (groups 1–4) were treated with 0, 40 mL of 25% azoxystrobin, 0.01 g of VdAL, or 40 mL of 25% azoxystrobin plus 0.01 g VdAL, respectively.
Project description:Although Cochliobolus miyabeanus is an important fungal leaf pathogen on rice plants worldwide, it is largely neglected by molecular plant phytopathologists. To shed new light on the molecular and genetic basis of the rice – C. miyabeanus interaction, we compared the transcriptome of rice leaves 12h post inoculation to uninfected leaves. Even though usable sources of resistance against brown spot disease caused by C. miyabeanus are scarce, silicon application emerges as a sustainable protection strategy. Many articles report the beneficial effect of silicon on brown spot resistance. however the underlying mechanisms remain largely unclear. The influence of silicon application on the transcriptome of healthy and infected rice leaves 12hpi was compared as well in an attempt to disentangle the modulation of silicon-induced brown spot resistance.
Project description:5 leaves old rice plantlets were infected with Magnaporthe grisea spores and zero, two hours and twenty four houres after infection samples were collected
Project description:In this study, we examined the transcriptome dynamics within the matured fully expanded rice leaf and used strand-specific RNA sequencing to generate a comprehensive transcriptome dataset for the mature rice leaf. The rice Nipponbare (Oryza sativa l. japonica) seedlings were grown in the greenhouse. About 20 days after planting, the fully opened 4th leaves was cut it into seven 3-cm segments, from bottom to tip and labeled as sections 1 to 7, respectively. The tissues were immediately frozen in liquid nitrogen for total RNA extraction. Two biological replicates were collected for each section. Note: All samples in SRA were assigned the same sample accession (SRS685294). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:Vector control and OsTZF1-OX rice plants (O. sativa L. cv. Nipponbare) were grown in plastic pots filled with nutrient soil for 2 weeks under flooded lowland conditions and a 12 h/12 h light/dark cycle (1000 umol photons/m2/s) at 28C (day) and 25C (night). For NaCl treatment, two-week-old plants were transferred to 250 mM NaCl solution and incubated for 2 days under the above conditions.
Project description:Although Cochliobolus miyabeanus is an important fungal leaf pathogen on rice plants worldwide, it is largely neglected by molecular plant phytopathologists. To shed new light on the molecular and genetic basis of the rice M-bM-^@M-^S C. miyabeanus interaction, we compared the transcriptome of rice leaves 12h post inoculation to uninfected leaves. Even though usable sources of resistance against brown spot disease caused by C. miyabeanus are scarce, silicon application emerges as a sustainable protection strategy. Many articles report the beneficial effect of silicon on brown spot resistance. however the underlying mechanisms remain largely unclear. The influence of silicon application on the transcriptome of healthy and infected rice leaves 12hpi was compared as well in an attempt to disentangle the modulation of silicon-induced brown spot resistance. Comparison between C. miyabeanus- and mock-infected rice leaves 12h post inoculation. This study consist of a 2 x 2 factorial design (infected and non-infected; untreated and silicon-treated) in three biological replicates.
Project description:To understand the dynamics and global gene reprogramming in the early response to mechanical wounding in rice, the transcriptional response to mechanical injury was analyzed. A time-course experiment revealed the highly dynamic nature of the wound response in rice. Mechanical wounding triggered extensive gene expression reprogramming in the locally wounded leaf, affecting various physiological processes, including defense mechanisms and potentially tissue repair and regeneration. The rice response to mechanical wounding displayed both differences and similarities compared to the response to jasmonate treatment. These results highlight the importance of early JA signaling in response to mechanical stress in rice. This analysis provides an overview of the global transcriptional response to mechanical stress in rice, offering valuable insights for future studies on rice's response to injury, insect attack, and abiotic stresses.
Project description:Nucleosome free measurement of 14 day old rice leaves (2nd leaf) in heat stress and recovery and dehydration stress and recovery 5 conditions: control (30C, liquid media; at 0.5h, 2h, 4h); Heat (transferred from 30C to 40C; at 0.5h, 2h, 4h); Heat recovery (transferred back to 30C after 2h at 40C; after 2h); Dehydration (roots exposed to air; at 2h); Dehydration recovery (roots returned to liquid media after 1.5h in air; after 2h) Samples: 2 biological replicates.