Project description:To this date, host transcriptome studies in leprosy have focused on Schwann cells, as well as mouse-footpad and skin biopsies. Despite macrophages being the most infected cell types in leprosy lesions, there is no genome-wide experiments with this model. Here, we aimed at identifying host macrophages transcriptional changes induced by live-Mycobacterium leprae infection for 48 hours.
Project description:Our object is to characterize the distinguish gene enrichment group in skin of Mycobacterium leprae (M. leprae)-infected footpads compared to that of Mycobacterium leprae (M. leprae) non-infected footpads.
Project description:Our object is to characterize the distinguish gene enrichment group in skin of Mycobacterium leprae (M. leprae)-infected footpads compared to that of Mycobacterium leprae (M. leprae) non-infected footpads. One-condition experiment, Skin of M. leprae non-infected footpads (control) vs. Skin of M. leprae infected footpads (sample). Biological replicates: 3 control and 3 sample, independently grown and harvested from isolator. One replicate per array.
Project description:Our goal is to understand the mechanism of granuloma formation in molecular level using Mycobacterium leprae (M. leprae)-infected footpads.
Project description:Approximately half of M. lepraeâ??s transcriptome consists of inactive gene products. This has an impact on overall energy and resource consumption without potential benefit to this organism. However, multiple translational â??silencingâ?? mechanisms are present, reducing additional energy and resource expenditure required for protein production from these transcripts. The Mycobacterium leprae genome has less than 50% coding capacity and 1,133 pseudogenes. Preliminary evidence suggests that some pseudogenes are expressed. Therefore, defining pseudogene transcriptional and translational potentials should increase our understanding of their impact on M. leprae physiology. To address this, M. leprae was purified from the granulomatous hind footpad tissue of four individual nu/nu nude mice six months post-infection. M. leprae whole genome DNA microarrays representing the 1,614 annotated ORFs and 1,133 identified pseudogenes, were obtained from the Leprosy Research Support and Maintenance of an Armadillo Colony Post-Genome Era, Part I: Leprosy Research Support Contract (NO1 AI-25469) at Colorado State University. To validate 20% of genes positive by microarray analysis, RT-PCR was performed. Results of this study Gene expression analysis identified transcripts from 49% of all M. leprae genes including 57% of all ORFs and 43% of all pseudogenes in the genome. Pseudogenes were randomly distributed throughout the chromosome. Factors resulting in pseudogene transcription included: 1) co-orientation of transcribed pseudogenes with transcribed ORFs within or exclusive of operon-like structures; 2) the paucity of intrinsic stem-loop transcriptional terminators between transcribed ORFs and downstream pseudogenes; and 3) predicted pseudogene promoters. Mechanisms for translational silencing of pseudogene transcripts included the lack of both translational start codons and strong Shine-Dalgarno sequences. Transcribed pseudogenes also contained multiple in-frame stop codons and high Ka/Ks ratios, compared to that of homologs in M. tuberculosis and ORFs in M. leprae. A pseudogene transcript containing an active promoter, strong SD site, a start codon, but containing two in frame stop codons yielded a protein product when expressed in E. coli. Approximately half of M. leprae's transcriptome consists of inactive gene products consuming energy and resources without potential benefit to M. leprae. Presently it is unclear what additional detrimental affect(s) this large number of inactive mRNAs has on the functional capability of this organism. Translation of these pseudogenes may play an important role in overall energy consumption and resultant pathophysiological characteristics of M. leprae. However, this study also demonstrated that multiple translational silencing mechanisms are present, reducing additional energy and resource expenditure required for protein production from the vast majority of these transcripts. The overall design of this study was to identify the transcriptome of M. leprae in the granulomatous tissue of the mouse hind foot pad 6 months post infection.
Project description:Our goal is to understand the mechanism of granuloma formation in molecular level using Mycobacterium leprae (M. leprae)-infected footpads. One-condition experiment, M. leprae non-infected footpads (control) vs. M. leprae infected footpads (sample). Biological replicates: 6 control, 6 (sample), independently grown and harvested from isolator. One replicate per array.
Project description:Approximately half of M. leprae’s transcriptome consists of inactive gene products. This has an impact on overall energy and resource consumption without potential benefit to this organism. However, multiple translational ‘silencing’ mechanisms are present, reducing additional energy and resource expenditure required for protein production from these transcripts. The Mycobacterium leprae genome has less than 50% coding capacity and 1,133 pseudogenes. Preliminary evidence suggests that some pseudogenes are expressed. Therefore, defining pseudogene transcriptional and translational potentials should increase our understanding of their impact on M. leprae physiology. To address this, M. leprae was purified from the granulomatous hind footpad tissue of four individual nu/nu nude mice six months post-infection. M. leprae whole genome DNA microarrays representing the 1,614 annotated ORFs and 1,133 identified pseudogenes, were obtained from the Leprosy Research Support and Maintenance of an Armadillo Colony Post-Genome Era, Part I: Leprosy Research Support Contract (NO1 AI-25469) at Colorado State University. To validate 20% of genes positive by microarray analysis, RT-PCR was performed. Results of this study Gene expression analysis identified transcripts from 49% of all M. leprae genes including 57% of all ORFs and 43% of all pseudogenes in the genome. Pseudogenes were randomly distributed throughout the chromosome. Factors resulting in pseudogene transcription included: 1) co-orientation of transcribed pseudogenes with transcribed ORFs within or exclusive of operon-like structures; 2) the paucity of intrinsic stem-loop transcriptional terminators between transcribed ORFs and downstream pseudogenes; and 3) predicted pseudogene promoters. Mechanisms for translational silencing of pseudogene transcripts included the lack of both translational start codons and strong Shine-Dalgarno sequences. Transcribed pseudogenes also contained multiple in-frame stop codons and high Ka/Ks ratios, compared to that of homologs in M. tuberculosis and ORFs in M. leprae. A pseudogene transcript containing an active promoter, strong SD site, a start codon, but containing two in frame stop codons yielded a protein product when expressed in E. coli. Approximately half of M. leprae's transcriptome consists of inactive gene products consuming energy and resources without potential benefit to M. leprae. Presently it is unclear what additional detrimental affect(s) this large number of inactive mRNAs has on the functional capability of this organism. Translation of these pseudogenes may play an important role in overall energy consumption and resultant pathophysiological characteristics of M. leprae. However, this study also demonstrated that multiple translational silencing mechanisms are present, reducing additional energy and resource expenditure required for protein production from the vast majority of these transcripts.