Project description:Prostate gland is a highly androgen dependent gland. The first line of treatment for metastatic prostate cancer therefore, is androgen ablation. This can be achieved by multiple non-surgical methods. However, most of these cancers although respond well initially, become resistant to androgen ablation sooner or later. These cancers then become extremely aggressive and difficult to treat, thereby drastically affect the patient prognosis. A gene expression signature for castrate resistant prostate cancer would be useful in identification of mechanisms responsible for castrate resistance, as well as to predict the progression of the cancer into castrate resistance. For this, our group has done a RNA-seq analysis of a. Control group (C); b. Castrate Sensitive group (B) and c. Castrate Resistant group (A). Gene expression profiling was performed on these samples using RNA-seq. Differentially expressed genes between control and castrate sensitive as well as control and castrate resistant groups were identified.
Project description:To identify molecular singnal alterations between androgen dependent prostate cancer and castration resistant prostate cancer, we performed interspecies comparative microarray analyses using RNAs prepared from uncastrasion and castration tumor from LNCAP Orhotopic xenograft models of prostate cancer. microarray data from uncastrasion and castration tumor revealed that the gene expression profile is most significantly altered in between androgen dependent prostate cancer and castration resistant prostate cancer. Comparative analyses of LNCAP Orhotopic xenograft models of prostate cancer showed that genes involved in androgen dependent and androgen independent tumor were significantly altered.
Project description:Orthotopic tumors were previously generated from parental Prostate Luminal (PLum) cells under androgen‑dependent (PLum-AD) and androgen‑independent (PLum-AI) conditions in order to establish cellular models of prostate cancer progression (Abou-Kheir et al., 2011; doi: 10.1371/journal.pone.0026112). We used microarrays to evaluate the differential gene expression profiles underlying progression of prostate cancer from primary androgen-dependent stage to advanced androgen-independent stage using newly isolated murine prostate cancer cell lines. Those cell lines represent novel in vitro models of androgen‑dependent and –independent prostate cancer, recapitulating the progression of the disease to a more invasive phenotype upon androgen deprivation.
Project description:Progression to androgen independent is the main cause of death in prostate cancer, and the mechanism is still unclear. By reviewing the expression profiles of 26 prostate cancer samples in a holistic view, we found a group of genes differentially expressed in androgen independent compared with androgen dependent groups (p value< 0.01, t test). Focusing on apoptosis, proliferation, hormone and angiogenesis, we found a group of genes such as thioredoxin domain containing 5 (TXNDC5), tumor necrosis factor receptor superfamily, member 10a (TNFRSF10A), ribosomal protein S19 (RPS19) and Janus kinase 2 (JAK2) up-regulated in androgen independent prostate cancer, which could play important roles in the transition from androgen dependent to androgen independent and could be biomarkers of prognosis. The main aim was comparing the androgen dependent and androgen independent prostate cancer to identify differentially expressed genes. In addition, we added several normal prostate tissue sample for comparisons. Totally 29 experiments were performed without replicates. 3 for normal prostate tissue, 8 for androgen independent cancer and 18 for androgen dependent prostate cancer. In all experiments, the reference samples are common reference, a pool with unrelated fetal tissues.