Project description:Affymetrix U133A comparison of two groups (10 samples each): untreated (androgen-dependent) primary prostate cancer (Gleasons 5-9) and androgen-independent primary prostate cancer. All samples were microdissected for tumor cells only. Keywords = advanced prostate cancer Keywords = androgen-independence Keywords = laser capture microdissection Keywords = RNA amplification Keywords: other
Project description:Affymetrix U133A comparison of two groups (10 samples each): untreated (androgen-dependent) primary prostate cancer (Gleasons 5-9) and androgen-independent primary prostate cancer. All samples were microdissected for tumor cells only.
Project description:Progression to androgen independent is the main cause of death in prostate cancer, and the mechanism is still unclear. By reviewing the expression profiles of 26 prostate cancer samples in a holistic view, we found a group of genes differentially expressed in androgen independent compared with androgen dependent groups (p value< 0.01, t test). Focusing on apoptosis, proliferation, hormone and angiogenesis, we found a group of genes such as thioredoxin domain containing 5 (TXNDC5), tumor necrosis factor receptor superfamily, member 10a (TNFRSF10A), ribosomal protein S19 (RPS19) and Janus kinase 2 (JAK2) up-regulated in androgen independent prostate cancer, which could play important roles in the transition from androgen dependent to androgen independent and could be biomarkers of prognosis. Keywords: cell type comparison
Project description:Orthotopic tumors were previously generated from parental Prostate Luminal (PLum) cells under androgen‑dependent (PLum-AD) and androgen‑independent (PLum-AI) conditions in order to establish cellular models of prostate cancer progression (Abou-Kheir et al., 2011; doi: 10.1371/journal.pone.0026112). We used microarrays to evaluate the differential gene expression profiles underlying progression of prostate cancer from primary androgen-dependent stage to advanced androgen-independent stage using newly isolated murine prostate cancer cell lines. Those cell lines represent novel in vitro models of androgen‑dependent and –independent prostate cancer, recapitulating the progression of the disease to a more invasive phenotype upon androgen deprivation.
Project description:To identify molecular singnal alterations between androgen dependent prostate cancer and castration resistant prostate cancer, we performed interspecies comparative microarray analyses using RNAs prepared from uncastrasion and castration tumor from LNCAP Orhotopic xenograft models of prostate cancer. microarray data from uncastrasion and castration tumor revealed that the gene expression profile is most significantly altered in between androgen dependent prostate cancer and castration resistant prostate cancer. Comparative analyses of LNCAP Orhotopic xenograft models of prostate cancer showed that genes involved in androgen dependent and androgen independent tumor were significantly altered.
Project description:Progression to androgen independent is the main cause of death in prostate cancer, and the mechanism is still unclear. By reviewing the expression profiles of 26 prostate cancer samples in a holistic view, we found a group of genes differentially expressed in androgen independent compared with androgen dependent groups (p value< 0.01, t test). Focusing on apoptosis, proliferation, hormone and angiogenesis, we found a group of genes such as thioredoxin domain containing 5 (TXNDC5), tumor necrosis factor receptor superfamily, member 10a (TNFRSF10A), ribosomal protein S19 (RPS19) and Janus kinase 2 (JAK2) up-regulated in androgen independent prostate cancer, which could play important roles in the transition from androgen dependent to androgen independent and could be biomarkers of prognosis. The main aim was comparing the androgen dependent and androgen independent prostate cancer to identify differentially expressed genes. In addition, we added several normal prostate tissue sample for comparisons. Totally 29 experiments were performed without replicates. 3 for normal prostate tissue, 8 for androgen independent cancer and 18 for androgen dependent prostate cancer. In all experiments, the reference samples are common reference, a pool with unrelated fetal tissues.
Project description:To identify molecular singnal alterations between androgen dependent prostate cancer and castration resistant prostate cancer, we performed interspecies comparative microarray analyses using RNAs prepared from uncastrasion and castration tumor from LNCAP Orhotopic xenograft models of prostate cancer. microarray data from uncastrasion and castration tumor revealed that the gene expression profile is most significantly altered in between androgen dependent prostate cancer and castration resistant prostate cancer. Comparative analyses of LNCAP Orhotopic xenograft models of prostate cancer showed that genes involved in androgen dependent and androgen independent tumor were significantly altered. We prepared RNA samples from 4 samples uncastrasion and 4 samples castration tumors from LNCAP Orhotopic xenograft models of prostate cancer . High-quality RNA samples were subjected to microarray analysis using the Affymetrix Human Gene 2.0 ST platform, and only those results that passed examinations for quality assurance and quality control of the Human Gene 2.0 ST arrays were retrieved. In total, we obtained gene expression profiles from the following samples: 4 samples uncastrasion and 4 samples castration tumors
Project description:Androgen-independent prostate adenocarcinomas are responsible for about 6% of overall cancer deaths in men. We used DNA microarrays to identify genes related to the transition between androgen-dependent and androgen-independent stages in the LuCaP 23.1 xenograft model of prostate adenocarcinoma. Keywords: Prostate cancer, cDNA array
Project description:TMPRSS2 is an androgen-regulated cell surface serine protease expressed predominantly in prostate epithelium. TMPRSS2 is expressed highly in localized high-grade prostate cancers and in the majority of human prostate cancer metastasis. Through the generation of mouse models with a targeted deletion of Tmprss2, we demonstrate that the activity of this protease regulates cancer cell invasion and metastasis to distant organs. By screening combinatorial peptide libraries we identified a spectrum of TMPRSS2 substrates that include pro-hepatocyte growth factor (HGF). HGF activated by TMPRSS2 promoted c-Met receptor tyrosine kinase signaling, and initiated a pro-invasive EMT phenotype. Chemical library screens identified a potent bioavailable TMPRSS2 inhibitor that suppressed prostate cancer metastasis in vivo. Together, these findings provide a mechanistic link between androgen-regulated signaling programs and prostate cancer metastasis that operate via context-dependent interactions with extracellular constituents of the tumor microenvironment. Custom mouse cDNA microarrays were used to measure transcript levels in microdissected anterior prostate tumors from Tmprss2+/+;TRAMP mice, Tmprss2-/-;TRAMP mice or strain-matched benign epithelium. All samples were laser-capture microdissected and total RNA isolated and amplified prior to hybridization against a reference pool of normal adult mouse tissues.