Project description:Animals have evolved different foraging strategies in which some animals forage independently and others forage in groups. The evolution of social feeding does not necessarily require cooperation; social feeding can be a beneficial individual-level strategy if it provides mutualistic benefits, for example though increasing the efficiency of resource extraction or processing. We found that Trichoplax adhaerens, the simplest multicellular animal ever described, engages in social feeding behavior. T. adhaerens lacks muscle tissue, nervous and digestive systems - yet is capable of aggregating and forming groups of closely connected individuals who collectively feed. The tight physical interactions between the animals are transitory and appear to serve the goal of staying connected to neighbors during the external digestion of algae when enzymes are released on the biofilm and nutrients are absorbed through the ventral epithelium. We found that T. adhaerens are more likely to engage in social feeding when the concentrations of algae are high - both in a semi-natural conditions and in vitro. It is surprising that T. adhaerens - an organism without a nervous system - is able to engage in this social feeding behavior. Whether this behavior is cooperative is still an open question. Nevertheless, the social feeding behavior of T. adhaerens, an early multicellular animal, suggests that sociality may have played an important role in the early evolution of animals. It also suggests that T. adhaerens could be used as a simple model organism for exploring questions regarding ecology and sociobiology.
Project description:A detailed annotation of non-protein coding RNAs is typically missing in initial releases of newly sequenced genomes. Here we report on a comprehensive ncRNA annotation of the genome of Trichoplax adhaerens, the presumably most basal metazoan whose genome has been published to-date. Since blast identified only a small fraction of the best-conserved ncRNAs--in particular rRNAs, tRNAs and some snRNAs--we developed a semi-global dynamic programming tool, GotohScan, to increase the sensitivity of the homology search. It successfully identified the full complement of major and minor spliceosomal snRNAs, the genes for RNase P and MRP RNAs, the SRP RNA, as well as several small nucleolar RNAs. We did not find any microRNA candidates homologous to known eumetazoan sequences. Interestingly, most ncRNAs, including the pol-III transcripts, appear as single-copy genes or with very small copy numbers in the Trichoplax genome.
Project description:Protein O-GlcNAcylation is a reversible post-translational signaling modification of nucleocytoplasmic proteins that is essential for embryonic development in bilateria. In a search for a reductionist model to study O-GlcNAc signaling, we discovered the presence of functional O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and nucleocytoplasmic protein O-GlcNAcylation in the most basal extant animal, the placozoan Trichoplax adhaerens. We show via enzymatic characterization of Trichoplax OGT/OGA and genetic rescue experiments in Drosophila melanogaster that these proteins possess activities/functions similar to their bilaterian counterparts. The acquisition of O-GlcNAc signaling by metazoa may have facilitated the rapid and complex signaling mechanisms required for the evolution of multicellular organisms.
Project description:Trichoplax adhaerens is a flat, millimeter-sized marine animal that adheres to surfaces and grazes on algae. Trichoplax displays a repertoire of different feeding behaviors despite the apparent absence of a true nervous system with electrical or chemical synapses. It glides along surfaces to find food, propelled by beating cilia on cells at its ventral surface, and pauses during feeding by arresting ciliary beating. We found that when endomorphin-like peptides are applied to an animal, ciliary beating is arrested, mimicking natural feeding pauses. Antibodies against these neuropeptides label cells that express the neurosecretory proteins and voltage-gated calcium channels implicated in regulated secretion. These cells are embedded in the ventral epithelium, where they comprise only 4% of the total, and are concentrated around the edge of the animal. Each bears a cilium likely to be chemosensory and used to detect algae. Trichoplax pausing during feeding or spontaneously in the absence of food often induce their neighbors to pause as well, even neighbors not in direct contact. Pausing behavior propagates from animal to animal across distances much greater than the signal that diffuses from just one animal, so we presume that the peptides secreted from one animal elicit secretion from nearby animals. Signal amplification by peptide-induced peptide secretion explains how a small number of sensory secretory cells lacking processes and synapses can evoke a wave of peptide secretion across the entire animal to globally arrest ciliary beating and allow pausing during feeding.
Project description:The identification of genes encoding a p53 family member and an Mdm2 ortholog in the ancient placozoan Trichoplax adhaerens advocates for the evolutionary conservation of a pivotal stress-response pathway observed in all higher eukaryotes. Here, we recapitulate several key functionalities ascribed to this known interacting protein pair by analysis of the placozoan proteins (Tap53 and TaMdm2) using both in vitro and cellular assays. In addition to interacting with each other, the Tap53 and TaMdm2 proteins are also able to respectively bind human Mdm2 and p53, providing strong evidence for functional conservation. The key p53-degrading function of Mdm2 is also conserved in TaMdm2. Tap53 retained DNA binding associated with p53 transcription activation function. However, it lacked transactivation function in reporter genes assays using a heterologous cell line, suggesting a cofactor incompatibility. Overall, the data supports functional roles for TaMdm2 and Tap53, and further defines the p53 pathway as an evolutionary conserved fulcrum mediating cellular response to stress.
Project description:Mitochondrial genomes of multicellular animals are typically 15- to 24-kb circular molecules that encode a nearly identical set of 12-14 proteins for oxidative phosphorylation and 24-25 structural RNAs (16S rRNA, 12S rRNA, and tRNAs). These genomes lack significant intragenic spacers and are generally without introns. Here, we report the complete mitochondrial genome sequence of the placozoan Trichoplax adhaerens, a metazoan with the simplest known body plan of any animal, possessing no organs, no basal membrane, and only four different somatic cell types. Our analysis shows that the Trichoplax mitochondrion contains the largest known metazoan mtDNA genome at 43,079 bp, more than twice the size of the typical metazoan mtDNA. The mitochondrion's size is due to numerous intragenic spacers, several introns and ORFs of unknown function, and protein-coding regions that are generally larger than those found in other animals. Not only does the Trichoplax mtDNA have characteristics of the mitochondrial genomes of known metazoan outgroups, such as chytrid fungi and choanoflagellates, but, more importantly, it shares derived features unique to the Metazoa. Phylogenetic analyses of mitochondrial proteins provide strong support for the placement of the phylum Placozoa at the root of the Metazoa.
Project description:BACKGROUND:Trichoplax adhaerens is the best-known member of the phylum Placozoa, one of the earliest-diverging metazoan phyla. It is a small disk-shaped animal that glides on surfaces in warm oceans to feed on algae. Prior anatomical studies of Trichoplax revealed that it has a simple three-layered organization with four somatic cell types. RESULTS:We reinvestigate the cellular organization of Trichoplax using advanced freezing and microscopy techniques to identify localize and count cells. Six somatic cell types are deployed in stereotyped positions. A thick ventral plate, comprising the majority of the cells, includes ciliated epithelial cells, newly identified lipophil cells packed with large lipid granules, and gland cells. Lipophils project deep into the interior, where they alternate with regularly spaced fiber cells whose branches contact all other cell types, including cells of the dorsal and ventral epithelium. Crystal cells, each containing a birefringent crystal, are arrayed around the rim. Gland cells express several proteins typical of neurosecretory cells, and a subset of them, around the rim, also expresses an FMRFamide-like neuropeptide. CONCLUSIONS:Structural analysis of Trichoplax with significantly improved techniques provides an advance in understanding its cell types and their distributions. We find two previously undetected cell types, lipohil and crystal cells, and an organized body plan in which different cell types are arranged in distinct patterns. The composition of gland cells suggests that they are neurosecretory cells and could control locomotor and feeding behavior.
Project description:The hypoxic response in humans is mediated by the hypoxia-inducible transcription factor (HIF), for which prolyl hydroxylases (PHDs) act as oxygen-sensing components. The evolutionary origins of the HIF system have been previously unclear. We demonstrate a functional HIF system in the simplest animal, Trichoplax adhaerens: HIF targets in T. adhaerens include glycolytic and metabolic enzymes, suggesting a role for HIF in the adaptation of basal multicellular animals to fluctuating oxygen levels. Characterization of the T. adhaerens PHDs and cross-species complementation assays reveal a conserved oxygen-sensing mechanism. Cross-genomic analyses rationalize the relative importance of HIF system components, and imply that the HIF system is likely to be present in all animals, but is unique to this kingdom.