Project description:This SuperSeries is composed of the following subset Series: GSE22544: Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast: expression analysis GSE22839: Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast: copy number analysis Refer to individual Series
Project description:Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast: copy number analysis
| PRJNA129123 | ENA
Project description:Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast
Project description:Introduction: A major challenge in the interpretation of genomic profiling data generated from breast cancer samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis. One way to assess the relative importance of alterations in the transcriptome profile is to combine complementary analyses that assess changes in the copy number alterations (CNAs). This integrated analysis permits the identification of genes with altered expression that map within specific chromosomal regions that demonstrate copy number alterations, providing a mechanistic approach to identify the 'driver genes’. Methods: We have performed whole genome analysis of CNAs using the Affymetrix 250K Mapping array on 22 infiltrating ductal carcinoma samples (IDCs). Analysis of transcript expression alterations was performed using the Affymetrix U133 Plus2.0 array on 16 IDC samples. Twelve IDC samples were analyzed using both platforms and the data integrated. We also incorporated data from LOH analysis to identify genes showing loss of expression in LOH regions. Results: Copy number analysis results demarcated smaller boundaries for many previously reported CNAs, and in some cases, the CNAs were defined as more than a single contiguous event. Additionally, we were able to assign driver genes to these commonly reported regions using a rigorous methodology. For example, RAB25 showed a large increased expression in the tumors and mapped to the commonly reported amplification at 1q22. We also identified 5 genes in the 8q24 amplicon and TSEN4 in the 17q25 amplified region. LOH analysis confirmed some previously reported regions, and integration with copy number data determined that the detected LOH were copy neutral events. Finally, we have identified several RXR pathways that demonstrated down-regulation in IDC whose members may represent further targets of therapeutic intervention. Conclusion: We have demonstrated the utility of the application of integrated analysis using high-resolution CGH and whole genome transcript analysis for detecting driver genes in IDC. The high resolution platform allowed a refined demarcation of CNAs, and gene expression profiling provided a mechanism to detect genes directly impacted by the CNA. This is the first report of LOH in IDC using a high resolution platform. 22 IDC samples were analyzed for CNA and an overlapping 16 samples were analyzed for gene expression
Project description:Introduction: A major challenge in the interpretation of genomic profiling data generated from breast cancer samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis. One way to assess the relative importance of alterations in the transcriptome profile is to combine complementary analyses that assess changes in the copy number alterations (CNAs). This integrated analysis permits the identification of genes with altered expression that map within specific chromosomal regions that demonstrate copy number alterations, providing a mechanistic approach to identify the 'driver genesâ. Methods: We have performed whole genome analysis of CNAs using the Affymetrix 250K Mapping array on 22 infiltrating ductal carcinoma samples (IDCs). Analysis of transcript expression alterations was performed using the Affymetrix U133 Plus2.0 array on 16 IDC samples. Twelve IDC samples were analyzed using both platforms and the data integrated. We also incorporated data from LOH analysis to identify genes showing loss of expression in LOH regions. Results: Copy number analysis results demarcated smaller boundaries for many previously reported CNAs, and in some cases, the CNAs were defined as more than a single contiguous event. Additionally, we were able to assign driver genes to these commonly reported regions using a rigorous methodology. For example, RAB25 showed a large increased expression in the tumors and mapped to the commonly reported amplification at 1q22. We also identified 5 genes in the 8q24 amplicon and TSEN4 in the 17q25 amplified region. LOH analysis confirmed some previously reported regions, and integration with copy number data determined that the detected LOH were copy neutral events. Finally, we have identified several RXR pathways that demonstrated down-regulation in IDC whose members may represent further targets of therapeutic intervention. Conclusion: We have demonstrated the utility of the application of integrated analysis using high-resolution CGH and whole genome transcript analysis for detecting driver genes in IDC. The high resolution platform allowed a refined demarcation of CNAs, and gene expression profiling provided a mechanism to detect genes directly impacted by the CNA. This is the first report of LOH in IDC using a high resolution platform. 16 IDC samples analyzed with the U133 Plus 2.0 array compared to 4 normal control samples.
Project description:Introduction: A major challenge in the interpretation of genomic profiling data generated from breast cancer samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis. One way to assess the relative importance of alterations in the transcriptome profile is to combine complementary analyses that assess changes in the copy number alterations (CNAs). This integrated analysis permits the identification of genes with altered expression that map within specific chromosomal regions that demonstrate copy number alterations, providing a mechanistic approach to identify the 'driver genes’. Methods: We have performed whole genome analysis of CNAs using the Affymetrix 250K Mapping array on 22 infiltrating ductal carcinoma samples (IDCs). Analysis of transcript expression alterations was performed using the Affymetrix U133 Plus2.0 array on 16 IDC samples. Twelve IDC samples were analyzed using both platforms and the data integrated. We also incorporated data from LOH analysis to identify genes showing loss of expression in LOH regions. Results: Copy number analysis results demarcated smaller boundaries for many previously reported CNAs, and in some cases, the CNAs were defined as more than a single contiguous event. Additionally, we were able to assign driver genes to these commonly reported regions using a rigorous methodology. For example, RAB25 showed a large increased expression in the tumors and mapped to the commonly reported amplification at 1q22. We also identified 5 genes in the 8q24 amplicon and TSEN4 in the 17q25 amplified region. LOH analysis confirmed some previously reported regions, and integration with copy number data determined that the detected LOH were copy neutral events. Finally, we have identified several RXR pathways that demonstrated down-regulation in IDC whose members may represent further targets of therapeutic intervention. Conclusion: We have demonstrated the utility of the application of integrated analysis using high-resolution CGH and whole genome transcript analysis for detecting driver genes in IDC. The high resolution platform allowed a refined demarcation of CNAs, and gene expression profiling provided a mechanism to detect genes directly impacted by the CNA. This is the first report of LOH in IDC using a high resolution platform.
Project description:Introduction: A major challenge in the interpretation of genomic profiling data generated from breast cancer samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis. One way to assess the relative importance of alterations in the transcriptome profile is to combine complementary analyses that assess changes in the copy number alterations (CNAs). This integrated analysis permits the identification of genes with altered expression that map within specific chromosomal regions that demonstrate copy number alterations, providing a mechanistic approach to identify the 'driver genes’. Methods: We have performed whole genome analysis of CNAs using the Affymetrix 250K Mapping array on 22 infiltrating ductal carcinoma samples (IDCs). Analysis of transcript expression alterations was performed using the Affymetrix U133 Plus2.0 array on 16 IDC samples. Twelve IDC samples were analyzed using both platforms and the data integrated. We also incorporated data from LOH analysis to identify genes showing loss of expression in LOH regions. Results: Copy number analysis results demarcated smaller boundaries for many previously reported CNAs, and in some cases, the CNAs were defined as more than a single contiguous event. Additionally, we were able to assign driver genes to these commonly reported regions using a rigorous methodology. For example, RAB25 showed a large increased expression in the tumors and mapped to the commonly reported amplification at 1q22. We also identified 5 genes in the 8q24 amplicon and TSEN4 in the 17q25 amplified region. LOH analysis confirmed some previously reported regions, and integration with copy number data determined that the detected LOH were copy neutral events. Finally, we have identified several RXR pathways that demonstrated down-regulation in IDC whose members may represent further targets of therapeutic intervention. Conclusion: We have demonstrated the utility of the application of integrated analysis using high-resolution CGH and whole genome transcript analysis for detecting driver genes in IDC. The high resolution platform allowed a refined demarcation of CNAs, and gene expression profiling provided a mechanism to detect genes directly impacted by the CNA. This is the first report of LOH in IDC using a high resolution platform.
Project description:BACKGROUND: Cervical carcinoma develops as a result of multiple genetic alterations. Different studies investigated genomic alterations in cervical cancer mainly by means of metaphase comparative genomic hybridization (mCGH) and microsatellite marker analysis for the detection of loss of heterozygosity (LOH). Currently, high throughput methods such as array comparative genomic hybridization (array CGH), single nucleotide polymorphism array (SNP array) and gene expression arrays are available to study genome-wide alterations. Integration of these 3 platforms allows detection of genomic alterations at high resolution and investigation of an association between copy number changes and expression. RESULTS: Genome-wide copy number and genotype analysis of 10 cervical cancer cell lines by array CGH and SNP array showed highly complex large-scale alterations. A comparison between array CGH and SNP array revealed that the overall concordance in detection of the same areas with copy number alterations (CNA) was above 90%. The use of SNP arrays demonstrated that about 75% of LOH events would not have been found by methods which screen for copy number changes, such as array CGH, since these were LOH events without CNA. Regions frequently targeted by CNA, as determined by array CGH, such as amplification of 5p and 20q, and loss of 8p were confirmed by fluorescent in situ hybridization (FISH). Genome-wide, we did not find a correlation between copy-number and gene expression. At chromosome arm 5p however, 22% of the genes were significantly upregulated in cell lines with amplifications as compared to cell lines without amplifications, as measured by gene expression arrays. For 3 genes, SKP2, ANKH and TRIO, expression differences were confirmed by quantitative real-time PCR (qRT-PCR). CONCLUSION: This study showed that copy number data retrieved from either array CGH or SNP array are comparable and that the integration of genome-wide LOH, copy number and gene expression is useful for the identification of gene specific targets that could be relevant for the development and progression in cervical cancer. Keywords: DNA copynumber RNA expression correlation
Project description:BACKGROUND: Cervical carcinoma develops as a result of multiple genetic alterations. Different studies investigated genomic alterations in cervical cancer mainly by means of metaphase comparative genomic hybridization (mCGH) and microsatellite marker analysis for the detection of loss of heterozygosity (LOH). Currently, high throughput methods such as array comparative genomic hybridization (array CGH), single nucleotide polymorphism array (SNP array) and gene expression arrays are available to study genome-wide alterations. Integration of these 3 platforms allows detection of genomic alterations at high resolution and investigation of an association between copy number changes and expression. RESULTS: Genome-wide copy number and genotype analysis of 10 cervical cancer cell lines by array CGH and SNP array showed highly complex large-scale alterations. A comparison between array CGH and SNP array revealed that the overall concordance in detection of the same areas with copy number alterations (CNA) was above 90%. The use of SNP arrays demonstrated that about 75% of LOH events would not have been found by methods which screen for copy number changes, such as array CGH, since these were LOH events without CNA. Regions frequently targeted by CNA, as determined by array CGH, such as amplification of 5p and 20q, and loss of 8p were confirmed by fluorescent in situ hybridization (FISH). Genome-wide, we did not find a correlation between copy-number and gene expression. At chromosome arm 5p however, 22% of the genes were significantly upregulated in cell lines with amplifications as compared to cell lines without amplifications, as measured by gene expression arrays. For 3 genes, SKP2, ANKH and TRIO, expression differences were confirmed by quantitative real-time PCR (qRT-PCR). CONCLUSION: This study showed that copy number data retrieved from either array CGH or SNP array are comparable and that the integration of genome-wide LOH, copy number and gene expression is useful for the identification of gene specific targets that could be relevant for the development and progression in cervical cancer. Keywords: DNA copynumber RNA expression correlation Cervival cancer cell lines were hybridized to Affymetrix Focus arrays in duplicate. Correlations were made with copynumber profiles from arrayCGH and SNP arrays.