Project description:This SuperSeries is composed of the following subset Series: GSE16432: MSI2 regulates hematopoiesis and accelerates leukemogenesis GSE22773: Musashi 2 regulates normal hematopoiesis and accelerates leukemogenesis (LK and MS12-inducible) GSE22774: Musashi 2 regulates normal hematopoiesis and accelerates leukemogenesis (LSK and LK) GSE22775: Musashi 2 regulates normal hematopoiesis and accelerates leukemogenesis (Leukemia cell lines) Refer to individual Series
Project description:CHAF1B is the p60 subunit of the chromatin assembly factor (CAF1) complex, which is responsible for assembly of H3.1/H4 heterodimers at the replication fork during S phase. Here we report that CHAF1B is required for normal hematopoiesis while its overexpression promotes leukemia. CHAF1B has a pro-leukemia effect by binding chromatin at discrete sites and interfering with occupancy of transcription factors that promote myeloid differentiation, such as CEBPA. Reducing Chaf1b activity by either heterozygous deletion or overexpression of a CAF1 dominant negative allele was sufficient to suppress leukemogenesis in vivo without impairing normal hematopoiesis.
Project description:The 3q21q26 mice harboring a transgene recapitulating GATA2 enhancer-drived EVI1 overexpression in inv(3)(q21q26) allele develop leukemia. Gata2 heterogenous deletion accelerates leukemogenesis of the 3q21q26 mice. To get insights into the couse of the acceleration of leukemogenesis, RNA-sequencing analysis was performed using B220+Gr1–cKit+ populations containing leukemia-initiating cells in bone marrows of leukemic 3q21q26 and 3q21q26::Gata2+/– mice.
Project description:In acute myeloid leukemia, chemotherapy resistance remains prevalent and poorly understood. Using functional proteomics of patient AML specimens, we identified MEF2C S222 phosphorylation as a specific marker of primary chemoresistance. We found that transgenic Mef2cS222A/S222A mice engineered to block MEF2C phosphorylation exhibited normal hematopoiesis, but were resistant to leukemogenesis induced by MLL-AF9. MEF2C phosphorylation was required for leukemia stem cell maintenance, induced by MARK kinases in cells, and blocked by selective MARK inhibitor MRT199665, which caused apoptosis of MEF2C-activated human AML cell lines and primary patient specimens, but not those lacking MEF2C. These findings identify signaling-dependent dysregulation of transcription factor control as a determinant of therapy response in AML, with immediate potential for improved diagnosis and therapy for this disease.
Project description:In acute myeloid leukemia, chemotherapy resistance remains prevalent and poorly understood. Using functional proteomics of patient AML specimens, we identified MEF2C S222 phosphorylation as a specific marker of primary chemoresistance. We found that transgenic Mef2cS222A/S222A mice engineered to block MEF2C phosphorylation exhibited normal hematopoiesis, but were resistant to leukemogenesis induced by MLL-AF9. MEF2C phosphorylation was required for leukemia stem cell maintenance, induced by MARK kinases in cells, and blocked by selective MARK inhibitor MRT199665, which caused apoptosis of MEF2C-activated human AML cell lines and primary patient specimens, but not those lacking MEF2C. These findings identify signaling-dependent dysregulation of transcription factor control as a determinant of therapy response in AML, with immediate potential for improved diagnosis and therapy for this disease.
Project description:In acute myeloid leukemia, chemotherapy resistance remains prevalent and poorly understood. Using functional proteomics of patient AML specimens, we identified MEF2C S222 phosphorylation as a specific marker of primary chemoresistance. We found that transgenic Mef2cS222A/S222A mice engineered to block MEF2C phosphorylation exhibited normal hematopoiesis, but were resistant to leukemogenesis induced by MLL-AF9. MEF2C phosphorylation was required for leukemia stem cell maintenance, induced by MARK kinases in cells, and blocked by selective MARK inhibitor MRT199665, which caused apoptosis of MEF2C-activated human AML cell lines and primary patient specimens, but not those lacking MEF2C. These findings identify signaling-dependent dysregulation of transcription factor control as a determinant of therapy response in AML, with immediate potential for improved diagnosis and therapy for this disease.