Project description:This SuperSeries is composed of the following subset Series: GSE22141: MicroRNA signature during the time course of regeneration of the human airway mucociliary epithelium GSE22142: Transcriptome analysis during the time course of regeneration of the human airway mucociliary epithelium GSE22143: Transcriptomic impact of microRNAs-449 or microRNAs-34 overexpression in proliferating human airway epithelial cells GSE22144: miRNAs high throughput sequencing profiling of regenerating human airway epithelial cells GSE22145: miRNAs high throughput sequencing profiling of basals cells and columnar cells GSE22146: microRNAs signatures of Xenopus laevis embryo epidermis at stage 11 (non ciliated) and 26 (ciliated) using high throughput sequencing Refer to individual Series
Project description:We used microarrays to detail the global programme of gene expression that occurs in response to miR-449 or miR-34 overexpression in proliferating HAECs.
Project description:We used microarrays to detail the global programme of gene expression that occurs in response to miR-449 or miR-34 overexpression in proliferating HAECs. Each donors were transfected with pre-miR-Negative control, pre-miR-449a and pre-miR-449b. The donors 3 and 4 were morever transfected with pre-miRs-34 (34a, 34b-5p, 34c-5p).
Project description:MicroRNA ablation prevents multiciliogenesis via cell cycle deregulation MicroRNAs (miRNAs) have been implicated in various biological processes but have been most frequently described to inhibit proliferation and tumorigenesis. Here we describe an essential function of the miR-34/449 family during differentiation of multiciliated cells that is mediated by their well-described suppression of cell cycle progression. Constitutive deletion of all six members of this miRNA family triggers a derepression of multiple cell cycle-promoting proteins, thereby preventing epithelial cells from exiting the cell cycle and to maintain in a quiescent state. As a result, formation of motile multicilia is strongly inhibited in several tissues including the respiratory epithelium and the fallopian tube. Consequently, mice lacking miR-34/449 genes display infertility as well as severe chronic airway disease leading to postnatal death. These results show how miRNA-mediated repression of the cell cycle is required to allow multiciliogenesis to proceed during epithelial differentiation.
Project description:Chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) are clinically and molecularly heterogeneous diseases. We utilized clustering and integrative network analyses to elucidate roles for microRNAs (miRNAs) and miRNA isoforms (isomiRs) in COPD and ILD pathogenesis. Short RNA sequencing was performed on 351 lung tissue samples of COPD (n=145), ILD (n=144) and controls (n=64). Five distinct subclusters of samples were identified including 1 COPD-predominant cluster and 2 ILD-predominant clusters which associated with different clinical measurements of disease severity. Utilizing 262 samples with gene expression and SNP microarrays, we built disease-specific genetic and expression networks to predict key miRNA regulators of gene expression. Members of miR-449/34 family, known to promote airway differentiation by repressing the Notch pathway, were among the top connected miRNAs in both COPD and ILD networks. Genes associated with miR-449/34 members in the disease networks were enriched among genes that increase in expression with airway differentiation at an air-liquid interface. A highly expressed isomiR containing a novel seed sequence was identified at the miR-34c-5p locus. 47% of the anticorrelated predicted targets for this isomiR were distinct from the canonical seed sequence for miR-34c-5p. Overexpression of the canonical miR-34c-5p and the miR-34c-5p isomiR with an alternative seed sequence down-regulated NOTCH1 and NOTCH4. However, only overexpression of the isomiR down-regulated genes involved in Ras signaling such as CRKL and GRB2. Overall, these findings elucidate molecular heterogeneity inherent across COPD and ILD patients and further suggest roles for miR-34c in regulating disease-associated gene-expression.
Project description:We have developed a new model of the human airway epithelial cell by deriving the cell-specific metabolic reactions identified from (i) a draft automated model by Wang et al. 2017 (ii) gene expression datasets of the human airway epithelial cell (Deprez et al., 2020; Braga et al., 2020). (iii) We obtained additional reactions, gene-to-reaction associations and pathways (that were not in the automated model) from HumanCyc (Trupp et al., 2010) and (iv) performed stochastic and dynamic simulations on the model generated including manual curations from primary literature and Recon3D (Brunk et al., 2018). (v) We added the viral biomass maintenance function into the model, previously developed for the macrophage cell (Renz et al. 2020) to develop the new integrated model of the human airway epithelial cell and the SARS-CoV-2 virus, (iBBEC4660).
Project description:Responses of the Human Airway Epithelium Transcriptome to In Vivo Injury; To identify genes participating in repair of the human airway epithelium following injury, we used bronchoscopy and brushing to denude the airway epithelium of healthy individuals, sequentially sampled the same region 7 and 14 days later, and assessed the recovered epithelium for relative levels of gene expression using Affymetrix high-density oligonucleotide microarrays with TaqMan PCR confirmation. Histologic assessment showed that the epithelium was denuded immediately following injury, at 7 days the epithelium was completely covered but partially de-differentiated, and by 14 days there was close to normal proportions of differentiated cells. Gene expression analysis was carried out with both the Affymetrix Microarray Suite 5.0 and Robust Multi-array Average algorithms, applying a multiple test correction to identify bona fide changes in gene expression. At day 7, there were substantial differences in the gene expression pattern compared to the resting epithelium, with a distinctive airway epithelial â??repair transcriptomeâ?? of actively proliferating cells in the process of re-differentiation. The repair transcriptome at 7 days was dominated by genes encoding proteins involved in cell cycle regulation, transcription, signal transduction, metabolism and transport. Interestingly, the majority of cell cycle genes differentially expressed at day 7 belonged to the G2 and M late phases of the cell cycle, suggesting that the proliferating cells are relatively synchronized 1 wk following injury. At 14 days post-injury, the majority of the gene expression changes observed at day 7 were no longer observed, with the expression profile similar to that of resting airway epithelium. Using a class prediction algorithm, a group of 50 genes dominated by cell cycle genes, that represent a human airway epithelial â??repair signatureâ?? was identified. These observations provide a baseline of the functional gene categories participating in the process of normal human airway epithelial repair that can be used in future studies of injury and repair in human airway epithelial diseases. Experiment Overall Design: comparison of gene expression in airway epithelial cells of the large airways, before and after mechanical injury caused by airway brushing
Project description:Responses of the Human Airway Epithelium Transcriptome to In Vivo Injury To identify genes participating in repair of the human airway epithelium following injury, we used bronchoscopy and brushing to denude the airway epithelium of healthy individuals, sequentially sampled the same region 7 and 14 days later, and assessed the recovered epithelium for relative levels of gene expression using Affymetrix high-density oligonucleotide microarrays with TaqMan PCR confirmation. Histologic assessment showed that the epithelium was denuded immediately following injury, at 7 days the epithelium was completely covered but partially de-differentiated, and by 14 days there was close to normal proportions of differentiated cells. Gene expression analysis was carried out with both the Affymetrix Microarray Suite 5.0 and Robust Multi-array Average algorithms, applying a multiple test correction to identify bona fide changes in gene expression. At day 7, there were substantial differences in the gene expression pattern compared to the resting epithelium, with a distinctive airway epithelial “repair transcriptome” of actively proliferating cells in the process of re-differentiation. The repair transcriptome at 7 days was dominated by genes encoding proteins involved in cell cycle regulation, transcription, signal transduction, metabolism and transport. Interestingly, the majority of cell cycle genes differentially expressed at day 7 belonged to the G2 and M late phases of the cell cycle, suggesting that the proliferating cells are relatively synchronized 1 wk following injury. At 14 days post-injury, the majority of the gene expression changes observed at day 7 were no longer observed, with the expression profile similar to that of resting airway epithelium. Using a class prediction algorithm, a group of 50 genes dominated by cell cycle genes, that represent a human airway epithelial “repair signature” was identified. These observations provide a baseline of the functional gene categories participating in the process of normal human airway epithelial repair that can be used in future studies of injury and repair in human airway epithelial diseases. Keywords: response to airway injury
Project description:To identify transcriptomic signature of human airway epithelium as it undergoes full differentiation into mucociliated epithelial cells under air-liquid interface. We used microarrays to detail the global gene expression pattern from day 0 through day 28 following air-liquid interface in human airway epithelial cells and identified distinct clusters of gene expression during this process.