Project description:Here, we report the draft genome sequence of Salmonella enterica subsp. diarizonae serovar 61:k:1,5,(7) strain 1569, alternatively named 14PM0011, which is a common serovar in German sheep that is unrepresented in the databases and considered and described as being host adapted with low virulence.
Project description:Salmonella enterica subsp. diarizonae serovar 61:k:1,5,(7) is commonly associated with sheep. Occasionally, the serovar has been found to also infect humans. Here, we report the complete genome sequence of strain 14-SA00836-0, isolated from human urine. To our knowledge, this is the first reported complete genome sequence of this serovar isolated from a human clinical sample.
Project description:Background:The Salmonella enterica subsp. diarizonae serovar 61:k:1,5,(7) (SASd) has been found to be host-adapted to sheep, with a high prevalence in sheep herds worldwide. Infections are usually sub-clinical, however the serovar has the potential to cause diarrhea, abortions and chronic proliferative rhinitis. Although occurrence and significance of SASd infections in sheep have been extensively studied, the genetic mechanism underlying this unusual host-adaptation have remained unknown, due to a lack of (a) available high-quality genome sequence(s). Results:We utilized Nanopore and Illumina sequencing technologies to generate a de novo assembly of the 4.88-Mbp complete genome sequence of the SASd strain 16-SA00356, isolated from the organs of a deceased sheep in 2016. We annotated and analyzed the genome sequence with the aim to gain a deeper understanding of the genome characteristics associated with its pathogenicity and host adaptation to sheep. Overall, we found a number of interesting genomic features such as several prophage regions, a VirB4/D4 plasmid and novel genomic islands. By comparing the genome of 16-SA00356 to other S. enterica serovars we found that SASd features an increased number of pseudogenes as well as a high level of genomic rearrangements, both known indicators of host-adaptation. Conclusions:With this sequence, we provide the first complete and closed genome sequence of a SASd strain. With this study, we provide an important basis for an understanding of the genetic mechanism that underlie pathogenicity and host adaptation of SASd to sheep.
Project description:Forty strains of Salmonella enterica (S. enterica) subspecies salamae (II), arizonae (IIIa), diarizonae (IIIb), and houtenae (IV) were isolated from human or environmental samples and tested for bacteriophage production. Production of bacteriophages was observed in 15 S. enterica strains (37.5%) belonging to either the subspecies salamae (8 strains) or diarizonae (7 strains). Activity of phages was tested against 52 pathogenic S. enterica subsp. enterica isolates and showed that phages produced by subsp. salamae had broader activity against pathogenic salmonellae compared to phages from the subsp. diarizonae. All 15 phages were analyzed using PCR amplification of phage-specific regions and 9 different amplification profiles were identified. Five phages (SEN1, SEN4, SEN5, SEN22, and SEN34) were completely sequenced and classified as temperate phages. Phages SEN4 and SEN5 were genetically identical, thus representing a single phage type (i.e. SEN4/5). SEN1 and SEN4/5 fit into the group of P2-like phages, while the SEN22 phage showed sequence relatedness to P22-like phages. Interestingly, while phage SEN34 was genetically distantly related to Lambda-like phages (Siphoviridae), it had the morphology of the Myoviridae family. Based on sequence analysis and electron microscopy, phages SEN1 and SEN4/5 were members of the Myoviridae family and phage SEN22 belonged to the Podoviridae family.
Project description:Salmonella enterica subsp. diarizonae serotypes are primarily involved in reptile-associated salmonellosis in humans. Here, we report the draft genome sequences of three S. enterica subsp. diarizonae strains belonging to the serotype IIIb_61:1,v:1,5,(7), isolated from wheat grains collected at the time of harvest. Strains of serotype IIIb_61:1,v:1,5,(7) have been isolated from feces of reptiles, cattle, and sheep and from infections in humans.
Project description:FabR ChIP-chip on Salmonella enterica subsp. enterica serovar Typhimurium SL1344 using anti-Myc antibody against strain with chromosomally 9Myc-tagged FabR (IP samples) and wildtype strain (mock IP samples)