Project description:Transcriptomes of differentiated cells of the conditionally immortalized mouse podocyte cell line SVI (Schiwek et al., Kidney Int. 66: 91-101, 2004) were determined as described in Kabgani et al. (PLoS One 7:e34907, 2012). The transcriptomes of the podocyte cell line were mapped on a protein-protein interaction network of the podocyte (PodNet). Together with other transcriptomes taken from GEO, we analyzed differential gene regulation and differential regulation of protein-protein interactions between cultured podocytes and differentiated in vivo podocytes. Three independent batches were used.
Project description:Transcriptomes of differentiated cells of the conditionally immortalized mouse podocyte cell line SVI (Schiwek et al., Kidney Int. 66: 91-101, 2004) were determined as described in Kabgani et al. (PLoS One 7:e34907, 2012). The transcriptomes of the podocyte cell line were mapped on a protein-protein interaction network of the podocyte (PodNet). Together with other transcriptomes taken from GEO, we analyzed differential gene regulation and differential regulation of protein-protein interactions between cultured podocytes and differentiated in vivo podocytes.
Project description:The identification of the glucocorticoid receptor cistrome in a conditionally immortalized human podocyte cell line developed by transfection with the temperature-sensitive SV40-T gene
Project description:The specialized glomerular epithelial cell (podocyte) of the kidney is a complex cell that is often damaged in glomerular diseases. Study of this cell type is facilitated by an in vitro system of propagation of conditionally immortalized podocytes. Here, genes that are differentially expressed in this in vitro model of podocyte differentiation are evaluated. Conditionally immortalized undifferentiated mouse podocytes were cultured under permissive conditions at 33*C. Podocytes that were differentiated at the non-permissive conditions at 37*C were used for comparison.
Project description:The specialized glomerular epithelial cell (podocyte) of the kidney is a complex cell that is often damaged in glomerular diseases. Study of this cell type is facilitated by an in vitro system of propagation of conditionally immortalized podocytes. Here, genes that are differentially expressed in this in vitro model of podocyte differentiation are evaluated.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:We performed single-cell sequencing to characterize the cell types that are present in human induced pluripotent stem cell derived (iPS) kidney organoids and their transcriptional profile. Furthermore, using bulk RNA sequencing we compared the transcriptional profile of kidney organoid derived podocytes from a wildtype iPS line, an iPS line with 2 mutations in podocin (NPHS2) which causes clinical manifestation of nephrotic syndrome and an iPS line with one of these mutations repaired which causes no clinical symptoms. For reference and comparison we took along human in vivo glomeruli and a human conditionally immortalized podocyte cell line.
Project description:We explored H3K27me3 binding sites in the genome of differentiated, conditionally immortalized mouse podocytes. Cells were allowed to differentiate for 14 days, following thermoshifting, before treatment with either vehicle (DMSO) or the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep, 5µM for 48 hours) which degrades the histone methyltransferase, EZH2 ordinarily responsible for H3K27 trimethylation (H3K27me3). DNA was immunopreciptated with an H3K27me3-specific antibody. Studying H3K27me3 modification in Mouse Podocyte