Project description:The rice gene SUB1A-1 confers flooding tolerance restricting shoot growth during submergence. Rice with SUB1A also show more rapid recovery after submergence ends, but mechanisms by which SUB1A improves recovery from submergence had not been examined. In this study, the transcriptome was sequenced at five time points over a 24 hour submergence recovery period in near-isogenic rice genotypes with and without SUB1A.
Project description:Rice NSF45K microarray experiment to dissect submergence tolerance response in submergence tolerant rice plant, M202(Sub1): We previously characterized the rice (Oryza sativa L.) Sub1 locus encoding three Ethylene Responsive Factor (ERF) transcriptional regulators. Genotypes carrying the Sub1A-1 allele are tolerant of prolonged submergence. To elucidate the mechanism of Sub1A-1 mediated tolerance, we performed transcriptome analyses comparing the temporal submergence response of Sub1A-1 containing tolerant M202(Sub1) with the intolerant isoline M202 lacking this gene at three duration of submergence (0d, 1d, and 6d) with two biological replicates and one or two dye-swaps. We identified 898 genes displaying Sub1A-1-dependent regulation. Keywords: Abiotic stress tolerance response
Project description:An indica rice cultivar FR13A, is widely grown as submergence tolerant variety and can withstand submergence up to two weeks. The tolerance is governed by a major QTL on chromosome 9 and represented as sub1. Recently the gene for sub1 has been mapped and cloned. However, the trait is governed by several QTLs and not by a single gene. To understand the mechanism of submergence tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and submerged conditions at seedling stage. Keywords: Mechanism of submergence tolerance
Project description:Comparative transcriptional profiling of two contrasting rice genotypes,IRAT109 (drought-resistant japonica cultivar) and ZS97 (drought-sensitive indica cultivar), under drought stress during the reproductive stage
Project description:An ERF transcription factor, Submergence-1A (Sub1A), dramatically enhances the tolerance to prolonged submergence in rice. For instance, rice accessions which lack Sub1A (e.g. M202) die within 7-10 d of complete submergence. By contrast, genotypes which posses Sub1A (e.g. M202(Sub1)) can endure submergence stress for 14 d. In this study, the two near isogenic lines with and without Sub1A were subjected to microarray analysis using Affymetrix Gene Chip technology. This analysis provided beneficial information to elucidate general response to submergence stress and to estimate Sub1A-dependent defense response to the stress at mRNA accumulation level.