Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes Sequence library of miRNAs from a single sample of human foetal mesenchymal stem cells. Results tested and confirmed by northern blotting. Please note that only raw data files are available for the embryonic and neual samples and thus, directly submitted to SRA (SRX547311, SRX548700, respectively under SRP042115/PRJNA247767)
Project description:Epigenetic factors regulate tissue-specific expression and X-chromosome inactivation. Previous studies have identified epigenetic differences between sexes in some human tissues. However, it is unclear whether epigenetic modifications contribute to sex-specific differences in insulin secretion and metabolism. In this study, we investigated the impact of sex on the genome-wide DNA methylation pattern in human pancreatic islets from 53 males and 34 females, and related the methylome to changes in expression and insulin secretion.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Epigenetic factors regulate tissue-specific expression and X-chromosome inactivation. Previous studies have identified epigenetic differences between sexes in some human tissues. However, it is unclear whether epigenetic modifications contribute to sex-specific differences in insulin secretion and metabolism. In this study, we investigated the impact of sex on the genome-wide DNA methylation pattern in human pancreatic islets from 53 males and 34 females, and related the methylome to changes in expression and insulin secretion. 53 male and 34 female human pancreatic islet samples. Normally methylated, non-methylated and fully methylated human DNA samples were included as controls
Project description:Sex biases in the genome-wide distribution of DNA methylation and gene expression levels are some of the manifestations of sexual dimorphism in mammals. To advance our understanding of the mechanisms that contribute to sex biases in DNA methylation and gene expression, we conducted whole genome bisulfite sequencing (WGBS) as well as RNA-seq on liver samples from mice with different combinations of sex phenotype and sex-chromosome complement. We compared groups of animals with different sex phenotypes, but the same genetic sexes, and vice versa, same sex phenotypes, but different sex-chromosome complements. We also compared sex-biased DNA methylation in mouse and human livers. Our data show that sex phenotype, X-chromosome dosage, and the presence of Y chromosome shape the differences in DNA methylation between males and females. We also demonstrate that sex bias in autosomal methylation is associated with sex bias in gene expression, whereas X-chromosome dosage-dependent methylation differences are not, as expected for a dosage-compensation mechanism. Furthermore, we find partial conservation between the repertoires of mouse and human genes that are associated with sex-biased methylation, an indication that gene function is likely to be an important factor in this phenomenon.