Project description:Epigenetic factors regulate tissue-specific expression and X-chromosome inactivation. Previous studies have identified epigenetic differences between sexes in some human tissues. However, it is unclear whether epigenetic modifications contribute to sex-specific differences in insulin secretion and metabolism. In this study, we investigated the impact of sex on the genome-wide DNA methylation pattern in human pancreatic islets from 53 males and 34 females, and related the methylome to changes in expression and insulin secretion. 53 male and 34 female human pancreatic islet samples. Normally methylated, non-methylated and fully methylated human DNA samples were included as controls
Project description:Epigenetic factors regulate tissue-specific expression and X-chromosome inactivation. Previous studies have identified epigenetic differences between sexes in some human tissues. However, it is unclear whether epigenetic modifications contribute to sex-specific differences in insulin secretion and metabolism. In this study, we investigated the impact of sex on the genome-wide DNA methylation pattern in human pancreatic islets from 53 males and 34 females, and related the methylome to changes in expression and insulin secretion.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs. Two-condition experiment, KP MSCs vs. 3A6 MSCs.
Project description:Little is known about the contribution of the epigenome to the pathophysiology of type 2 diabetes (T2D). Here we have used genome-wide DNA methylation profiling to obtain the first comprehensive DNA methylation data set for human T2D pancreatic islets. Therefore, we analyzed the methylation profile of 27,578 CpG sites affiliated to more than 14,000 genes in 16 samples of pancreatic islets, 11 normal and 5 type 2-diabetic. Keywords: DNA methylation Keywords: Methylation profiling by array We measured the methylation status of the 27,578 CpG sites (Human Methylation27 DNA BeadChip array) in genomic DNA obtained from pnacreatic islets of 11 non-diabetic and 5 type-2-diabetic male human donors to identify genes that are differentially methylated in T2D.
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes
Project description:Mechanisms driving sex differences across islet cells is unknown. Thus, studying sex differences in islet regulation and function represent a unique avenue to understand the sex-specific heterogeneity in β cell failure in diabetes. We examined sex and race differences in human pancreatic islets from 15 donors using an orthogonal series of experiments including single cell RNA-seq (scRNA-seq), single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), dynamic hormone secretion, and bioenergetics.