Project description:ngs2018_05_tor-analysis of arabidopsis mutants tor/lst8/yak1/maktor-Analysis of Arabidopsis insertion and suppressor mutants linked to the TOR signaling pathway.-Comparison of in vitro grown plantlets for lst8, yak1 mutants and double mutants corresponding to suppressor lines. Comparison of in vitro grown plantlets for mutants affected in LST8 interacting proteins (MAKTOR) compared to wild type.
Project description:Water use efficiency has long been considered as an important target for the breeding of improved plant performance under drought. Minimizing leaf transpirational water loss via reduction of stomatal water conductance plays a key contributory role in drought resistance. In this study, we employed both guard cell (GC) targeted and constitutive ectopic overexpression of the Target of Rapamycin (TOR) kinase, a master regulator of multiple signaling networks in transgenic Arabidopsis thaliana, to investigate the impact of these expressed AtTOR transgenes in response to drought and water use efficiency. We performed genome-wide transcriptome analysis employing RNA-seq on the three Arabidopsis genotypes grown on the three water treatments, and further analysis will be used to elucidate the potential mechanism(s) contributing to differences in leaf stomatal physiology between WT and transgenic lines.
Project description:The goal of this experiment was to explore the molecular network of glucose-TOR signaling in Arabidopsis seedling autotrophic transition stage. We used the whole-genome microarrays to detail the global program of gene expression mediated by glucose and TOR.