Project description:The expression of stress-related genes induced by feeding of chestnut moth larvae (Conistra vaccinii L.) was studied with Vitreoscilla hemoglobin-expressing (VHb) and non-transgenic hybrid aspen lines (Populus tremula x P. tremuloides). Besides the herbivore-injured leaves (L1), cDNA microarray analyses were conducted using uninjured leaves of hybrid aspen lines positioned above (A) and below (B) the herbivory exposed leaves.
Project description:Aim of the project: Genome wide gene expression profiles across the cambial zone are analyzed in 35um resolution from wild type hybrid aspen (Populus tremula x tremuloides) and two independent LMX5::AtIPT7 over expressor transgenic Populus tree lines.
Project description:Thermospermine-induced transcriptomic changes were explored in Populus tremula x P. tremuloides. Transgenic hybrid aspen plants expressing 35S::POPACAULIS5 were compared to wild-type hybrid aspen under the influence of PGRs and depleted from PGRs.
Project description:A gene expression analysis of the changes in in popolulus tremula during the autumn sensencece. Leaves were analyzed from late summer and late into autumn. Cytokinins are plant hormones that typically block or delay leaf senescence. We profiled 34 different cytokinins/cytokinin metabolites (including precursors, conjugates and degradation products) in leaves of a free-growing mature aspen (Populus tremula) before and after the initiation of autumnal senescence over three consecutive years. The levels and profiles of individual cytokinin species, or classes/groups, varied greatly between years, despite the fact that the onset of autumn senescence was at the same time each year, and senescence was not associated with depletion of either active or total cytokinin levels. Levels of aromatic cytokinins (topolins) were low and changed little over the autumn period. Diurnal variations and weather-dependent variations in cytokinin content were relatively limited. We also followed the expression patterns of all aspen genes implicated as having roles in cytokinin metabolism or signaling, but neither the pattern of regulation of any group of genes nor the expression of any particular gene supported the notion that decreased cytokinin signaling could explain the onset of senescence. Based on the results from this tree, we therefore suggest that cytokinin depletion is unlikely to explain the onset of autumn leaf senescence in aspen.
Project description:The expression of stress-related genes induced by feeding of chestnut moth larvae (Conistra vaccinii L.) was studied with Vitreoscilla hemoglobin-expressing (VHb) and non-transgenic hybrid aspen lines (Populus tremula x P. tremuloides). Besides the herbivore-injured leaves (L1), cDNA microarray analyses were conducted using uninjured leaves of hybrid aspen lines positioned above (A) and below (B) the herbivory exposed leaves. Two-condition experiment, control vs. herbivory exposure. Two hybrid aspen lines: non-transgenic V617 and VHb expressing V617 /45. Of each plant, three leaf types were analysed: the injured/uninjured leaf (L1) and nonorthostichous leaf positioned above (A) and below (B). Biological replicates: 3. On each array, two samples representing L1, A or B leaf type of control and herbivory treatment of either V617 or V617/45 line. line V617: wt_A_rep1-3, wt_B_rep1-3, wt_L1_rep1-3 line V617/45: VHb_A_rep1-3, VHb_B_rep1-3, VHb_L1_rep1-3 leaf type A: wt_A_rep1-3, VHb_A_rep1-3 leaf type B: wt_B_rep1-3, VHb_B_rep1-4 leaf type L1: wt_L1_rep1-3, VHb_L1_rep1-5
Project description:Here we applied a novel approach to isolate nuclei from complex plant tissues (https://doi.org/10.1371/journal.pone.0251149), to dissect the transcriptome profiling of the hybrid poplar (Populus tremula × alba) vegetative shoot apex at single-cell resolution.
Project description:Gene expression profiling in leaves of a free-growing aspen tree (Populus tremula) in Umea in northern Sweden during natural autumn senescence (from August 17 to September 21).
Project description:Background Ionic aluminum (mainly Al3+) is rhizotoxic and can be present in acid soils at concentrations high enough to inhibit root growth. Many forest tree species grow naturally in acid soils and often tolerate high concentrations of Al. Previously, we have shown that aspen (Populus tremula) releases citrate and oxalate from roots in response to Al exposure. To obtain further insights into the root responses of aspen to Al, we investigated root gene expression at Al conditions that inhibit root growth. Results Treatment of the aspen roots with 500 µM Al induced a strong inhibition of root growth within 6 h of exposure time. The root growth subsequently recovered, reaching growth rates comparable to that of control plants. Changes in gene expression were determined after 6 h, 2 d, and 10 d of Al exposure. Replicated transcriptome analyses using the Affymetrix poplar genome array revealed a total of 175 significantly up-regulated and 69 down-regulated genes, of which 70% could be annotated based on Arabidopsis genome resources. Between 6 h and 2 d, the number of responsive genes strongly decreased from 202 to 26, and then the number of changes remained low. The responses after 6 h were characterized by genes involved in cell wall modification, ion transport, and oxidative stress. Two genes with prolonged induction were closely related to the Arabidopsis Al tolerance genes ALS3 (for Al sensitive 3) and MATE (for multidrug and toxin efflux protein, mediating citrate efflux). Patterns of expression in different plant organs and in response to Al indicated that the two aspen genes are homologs of the Arabidopsis ALS3 and MATE. Conclusion Exposure of aspen roots to Al results in a rapid inhibition of root growth and a large change in root gene expression. The subsequent root growth recovery and the concomitant reduction in the number of responsive genes presumably reflect the success of the roots in activating Al tolerance mechanisms. The aspen genes ALS3 and MATE may be important components of these mechanisms.
Project description:In this study we report on transgenic hybrid aspen (Populus tremula x P. tremuloides) lines that showed potential to increase biomass production both in the greenhouse and after five years of growth in the field. The transgenic lines carried an overexpression construct for Populus tremula x tremuloides vesicle-associated membrane protein (VAMP)-associated protein PttVAP27-17 (Potri.019G116400) that was selected from a gene-mining program for novel regulators of wood formation. A proteomic analysis was performed to characterize the overall effect of the overexpression of PttVAP27-17 on plant metabolic pathways. 20 mg of xylem sample for the selected wild type (WT) and three transgenic lines (lines 1,2 and 3) was collected in the following manner from two-months-old, greenhouse grown trees: The frozen bottom-part of the stem (10-17 cm portion from the base of the stem) was peeled, and the surface of the secondary xylem consisting of living vessels and fibers (into the depth of approximately one mm from the surface) was scraped. The xylem scrapings were ground to fine powder in liquid nitrogen and stored at -80oC. The analyses included 3-5 biological replicates for each of the transgenic lines, and seven replicates for the wild type.
Project description:Background: Solubilized aluminum (Al) is rhizotoxic and can be present in acid soils at levels that inhibit root growth. Acid soils are found throughout the world and often support forests. However, unlike in herbaceous plants, little is known about the mechanisms by which forest trees respond to and tolerate Al. To begin to elucidate these mechanisms, we characterized transcriptomic changes in response to Al in roots of aspen (Populus tremula L.). Results: Aspen roots were treated with Al in solution culture for 6 h, 54 h, and 246 h. Transcriptomic changes were assessed by the Affymetrix GeneChip Poplar Genome Array. The analysis revealed 176 induced and 66 suppressed genes. The majority of these genes were regulated at 6 h, presumably reflecting root growth, which was strongly inhibited at 6 h and partially was recovered at 2 d and 10 d. Enrichment analysis identified sets of functionally related genes whose members were statistically over-represented compared to the genes on the microarray. These sets included genes related to cell wall modification, oxidative stress, cell death, and transport processes. Two of the genes involved in transport were related to the Arabidopsis Al tolerance genes AtALS3 (aluminum sensitive 3), possibly mediating redistribution of Al, and AtMATE (multi-drug and toxin extrusion), facilitating exudation of citrate. Expression patterns in response to Al in different plant tissues indicated that the two aspen genes are homologs of AtALS3 and AtMATE, suggesting that aspen and Arabidopsis share common mechanisms to cope with Al. Conclusion: This is the first survey of transcriptomic changes in response to Al in a forest tree. The results of our study provide a valuable set of data, which will help to further our understanding of the mechanisms and their regulation that enable aspen to grow in environments with toxic levels of Al. Aspen roots were treated with Al in solution culture for 6 h, 54 h, 246 h to cover a broad range of exposure times. Transcriptomic changes were assessed by the Affymetrix GeneChip Poplar Genome Array. For each time point, root tips of three independant plants were analyzed.