Project description:To understand the molecular mechanisms underlying the congenital anomalies observed in patients with Trisomy 18, we compared gene expression in uncultured amniotic fluid supernatant samples from second trimester fetuses with Trisomy 18 and from euploid controls. Analysis of differential expression using both individual-gene and gene-set or pathway methods indicated disrupted function in ion transport, MHCII/T-cell mediated immunity, DNA repair, G-protein mediated signaling, kinases, and glycosylation. Significant down-regulation of genes involved in adrenal development was also identified in the trisomic fetuses, possibly explaining both the abnormal maternal serum estriols and the pre- and postnatal growth restriction found in this condition.
Project description:To understand the molecular mechanisms underlying the congenital anomalies observed in patients with Trisomy 18, we compared gene expression in uncultured amniotic fluid supernatant samples from second trimester fetuses with Trisomy 18 and from euploid controls. Analysis of differential expression using both individual-gene and gene-set or pathway methods indicated disrupted function in ion transport, MHCII/T-cell mediated immunity, DNA repair, G-protein mediated signaling, kinases, and glycosylation. Significant down-regulation of genes involved in adrenal development was also identified in the trisomic fetuses, possibly explaining both the abnormal maternal serum estriols and the pre- and postnatal growth restriction found in this condition. We compared expression in five female fetuses with confirmed metaphase karotypes 47, XX, +18 and six female controls (46, XX). The gestational ages of the samples ranged from 17 5/7 to 20 6/7 weeks.
Project description:Background: Turner syndrome, a common sex chromosome aneuploidy, has characteristics and malformations associated with the phenotype. Fetal amniotic fluid is a complex biological material that could contribute to the understanding Turner syndrome pathogenesis. Global gene expression analysis of Turner syndrome fetal amniotic fluid supernatant was utilized to identify organ systems and specific genes that may play a role in the pathophysiologic changes that are seen in individuals with Turner syndrome. Methods: Global gene expression analysis was performed utilizing cell-free RNA from five midtrimester fetuses with Turner syndrome matched with five euploid female fetuses. Total RNA was extracted, amplified, hybridized onto GeneChipM-BM-. Human Genome U133 Plus 2.0 arrays. Network and pathway analysis of differentially expressed genes were completed. Chromosomal distribution of gene expression differences, differential expression by pathway and organ system (a M-bM-^@M-^\Turner syndrome core transcriptomeM-bM-^@M-^]), and candidate genes that could play a pathological role were identified. Results: There were 470 differentially expressed genes identified in the Turner syndrome transcriptome. The differentially expressed genes were distributed randomly across different chromosomes. Among genes on the X chromosome, XIST was down-regulated, and SHOX not differentially expressed. The most highly represented organ systems were hematologic/immune and neurologic. Increased representation of differentially expressed genes in the hematologic/immune system distinguishes the Turner syndrome transcriptome from the euploid, trisomy 18 and trisomy 21 transcriptomes previously studied in our laboratory. Manual curation of the differentially expressed gene list identified genes including NFATC3, IGFBP5, and LDLR that warrant further study. 2nd trimester amniotic fluid mRNA expression was compared between 5 Turners and 5 euploid fetuses.
Project description:Background: Turner syndrome, a common sex chromosome aneuploidy, has characteristics and malformations associated with the phenotype. Fetal amniotic fluid is a complex biological material that could contribute to the understanding Turner syndrome pathogenesis. Global gene expression analysis of Turner syndrome fetal amniotic fluid supernatant was utilized to identify organ systems and specific genes that may play a role in the pathophysiologic changes that are seen in individuals with Turner syndrome. Methods: Global gene expression analysis was performed utilizing cell-free RNA from five midtrimester fetuses with Turner syndrome matched with five euploid female fetuses. Total RNA was extracted, amplified, hybridized onto GeneChip® Human Genome U133 Plus 2.0 arrays. Network and pathway analysis of differentially expressed genes were completed. Chromosomal distribution of gene expression differences, differential expression by pathway and organ system (a “Turner syndrome core transcriptome”), and candidate genes that could play a pathological role were identified. Results: There were 470 differentially expressed genes identified in the Turner syndrome transcriptome. The differentially expressed genes were distributed randomly across different chromosomes. Among genes on the X chromosome, XIST was down-regulated, and SHOX not differentially expressed. The most highly represented organ systems were hematologic/immune and neurologic. Increased representation of differentially expressed genes in the hematologic/immune system distinguishes the Turner syndrome transcriptome from the euploid, trisomy 18 and trisomy 21 transcriptomes previously studied in our laboratory. Manual curation of the differentially expressed gene list identified genes including NFATC3, IGFBP5, and LDLR that warrant further study.
Project description:In order to characterize the differences between second trimester Down syndrome (DS) and euploid fetuses, we compared gene expression in uncultured amniotic fluid supernatant samples. We identified individually differentially expressed genes via paired t-tests in the matched samples, and a set of differentially expressed genes on chromosome 21 using Gene Set Enrichment Analysis. Functional pathway analysis of the resulting genes highlighted the importance of oxidative stress, ion transport, and G-protein signaling in the DS fetuses. We profiled seven DS expression samples and seven controls matched for gender and approximate gestational age..
Project description:we analyzed the transcriptomics of single cell of amniotic fluid both from normal and trisomy 18 individuals by using 10x Genomics.
Project description:In order to characterize the differences between second trimester Down syndrome (DS) and euploid fetuses, we compared gene expression in uncultured amniotic fluid supernatant samples. We identified individually differentially expressed genes via paired t-tests in the matched samples, and a set of differentially expressed genes on chromosome 21 using Gene Set Enrichment Analysis. Functional pathway analysis of the resulting genes highlighted the importance of oxidative stress, ion transport, and G-protein signaling in the DS fetuses.
Project description:Using cell-free fetal RNA from amniotic fluid supernatant samples, the gene expression profiles of fetuses with varying FMR1 5’ UTR CGG repeat lengths were compared to gestational age- and sex-matched controls. Broad patterns of genome-wide expression changes were identified when comparing fetuses with expanded FMR1 alleles to those with normal length FMR1 alleles. Genes with altered expression include those related to ubiquitination, mitochondrial function and neuronal/synaptic architecture as well as genes previously linked to other intellectual disabilities and abnormalities of motor function.
Project description:Despite numerous studies on fetal therapy for myelomeningoceles (MMC), the pathophysiology of this malformation remains poorly understood. This study aimed to analyze the biochemical profile and proteome of amniotic fluid (AF) supernatants from MMC fetuses to explore the prenatal pathophysiology. Proteome analysis was conducted in 18 MMC and 18 healthy singleton fetuses, as well as in 5 dichorionic pregnancies with MMC fetuses and their healthy co-twins. ELISA tests were used to validate proteome results. Biochemical analysis revealed anal incontinence in 37% of MMC cases (p<0.0001), while controls had a normal profile. Proteomics identified 2453 quantified proteins, with 39 significantly up-regulated and 10 down-regulated in MMC. Up-regulated proteins included ectodomains of CHL1, APLP1, SEZ6, SEZ6L, which are generated by the Alzheimer’s disease-linked protease BACE1. Some proteins varied with disease and gestational age, e.g., CNTN1, NEO1, and DRAXIN. COL11A2 and EFNB1 decreased in MMC, rising in controls. Contrary to the in-utero inflammation or meconium neurotoxicity hypothesis, our results suggest a CSF leak in AF. Abundance of brain and spinal cord proteins may aid diagnosis, characterizing cases and informing prognosis for couples.