Project description:Renal cell carcinoma (RCC) exhibits some unusual features and genes commonly mutated in cancer are rarely mutated in clear-cell RCC (ccRCC), the most common type. The most prevalent genetic alteration in ccRCC is the inactivation of the tumor suppressor gene VHL. Using whole-genome and exome sequencing we discovered BAP1 as a novel tumor suppressor in ccRCC that shows little overlap with mutations in PBRM1, another recent tumor suppressor. Whereas VHL was mutated in 81% of the patients (142/176), PBRM1 was lost in 58% and BAP1 in 15% of the patients analyzed. All these tumor suppressor genes are located in chromosome 3p, which is partially or completely lost in most ccRCC patients. However, BAP1 but not PBRM1 loss was associated with higher Fuhrman grade and, therefore, poorer outcome. Xenograft tumors (tumorgrafts) implanted orthotopically in mice retained >92% of mutations and exhibited similar DNA copy number alterations to corresponding primary tumors. Thus, after inactivation of VHL, the acquisition of a mutation in BAP1 or PBRM1 defines a different program that might alter the fate of the patient. Our results establish the foundation for an integrated pathological and molecular genetic classification of about 70% of ccRCC patients, paving the way for subtype-specific treatments exploiting genetic vulnerabilities. The genomic DNA of clear-cell renal cell carcinoma (ccRCC) primary tumors, tumors growing in immunodeficient mice (tumorgrafts), and normal samples were labeled and hybridized to Affymetrix SNP arrays 6.0.
Project description:Renal cell carcinoma (RCC) exhibits some unusual features and genes commonly mutated in cancer are rarely mutated in clear-cell RCC (ccRCC), the most common type. The most prevalent genetic alteration in ccRCC is the inactivation of the tumor suppressor gene VHL. Using whole-genome and exome sequencing we discovered BAP1 as a novel tumor suppressor in ccRCC that shows little overlap with mutations in PBRM1, another recent tumor suppressor. Whereas VHL was mutated in 81% of the patients (142/176), PBRM1 was lost in 58% and BAP1 in 15% of the patients analyzed. All these tumor suppressor genes are located in chromosome 3p, which is partially or completely lost in most ccRCC patients. However, BAP1 but not PBRM1 loss was associated with higher Fuhrman grade and, therefore, poorer outcome. Xenograft tumors (tumorgrafts) implanted orthotopically in mice exhibited similar gene expression profiling to corresponding primary tumors. Gene expression profiling of tumors and tumorgrafts displayed different signatures for BAP1- and PBRM1-deficient samples. Thus, after inactivation of VHL, the acquisition of a mutation in BAP1 or PBRM1 defines a different program that might alter the fate of the patient. Our results establish the foundation for an integrated pathological and molecular genetic classification of about 70% of ccRCC patients, paving the way for subtype-specific treatments exploiting genetic vulnerabilities. The RNA of clear-cell renal cell carcinoma (ccRCC) primary tumors, tumors growing in immunodeficient mice (tumorgrafts), and normal kidney cortices were labeled and hybridized to Affymetrix Human Genome U133 Plus 2.0 arrays.
Project description:Renal cell carcinoma (RCC) exhibits some unusual features and genes commonly mutated in cancer are rarely mutated in clear-cell RCC (ccRCC), the most common type. The most prevalent genetic alteration in ccRCC is the inactivation of the tumor suppressor gene VHL. Using whole-genome and exome sequencing we discovered BAP1 as a novel tumor suppressor in ccRCC that shows little overlap with mutations in PBRM1, another recent tumor suppressor. Whereas VHL was mutated in 81% of the patients (142/176), PBRM1 was lost in 58% and BAP1 in 15% of the patients analyzed. All these tumor suppressor genes are located in chromosome 3p, which is partially or completely lost in most ccRCC patients. However, BAP1 but not PBRM1 loss was associated with higher Fuhrman grade and, therefore, poorer outcome. Xenograft tumors (tumorgrafts) implanted orthotopically in mice retained >92% of mutations and exhibited similar DNA copy number alterations to corresponding primary tumors. Thus, after inactivation of VHL, the acquisition of a mutation in BAP1 or PBRM1 defines a different program that might alter the fate of the patient. Our results establish the foundation for an integrated pathological and molecular genetic classification of about 70% of ccRCC patients, paving the way for subtype-specific treatments exploiting genetic vulnerabilities.
Project description:Renal cell carcinoma (RCC) exhibits some unusual features and genes commonly mutated in cancer are rarely mutated in clear-cell RCC (ccRCC), the most common type. The most prevalent genetic alteration in ccRCC is the inactivation of the tumor suppressor gene VHL. Using whole-genome and exome sequencing we discovered BAP1 as a novel tumor suppressor in ccRCC that shows little overlap with mutations in PBRM1, another recent tumor suppressor. Whereas VHL was mutated in 81% of the patients (142/176), PBRM1 was lost in 58% and BAP1 in 15% of the patients analyzed. All these tumor suppressor genes are located in chromosome 3p, which is partially or completely lost in most ccRCC patients. However, BAP1 but not PBRM1 loss was associated with higher Fuhrman grade and, therefore, poorer outcome. Xenograft tumors (tumorgrafts) implanted orthotopically in mice exhibited similar gene expression profiling to corresponding primary tumors. Gene expression profiling of tumors and tumorgrafts displayed different signatures for BAP1- and PBRM1-deficient samples. Thus, after inactivation of VHL, the acquisition of a mutation in BAP1 or PBRM1 defines a different program that might alter the fate of the patient. Our results establish the foundation for an integrated pathological and molecular genetic classification of about 70% of ccRCC patients, paving the way for subtype-specific treatments exploiting genetic vulnerabilities.
Project description:PBRM1 is a component of the PBAF chromatin remodelling complex and has been observed to be deregulated in a significant proportion of patients with clear-cell Renal Cell Carcinoma (ccRCC). This study employs RNA-Seq to identify differentially expressed genes in cellular models of ccRCC by expressing PBRM1 in PBRM1-deficient Caki2 cells.
Project description:BRCA1-associated protein 1 (BAP1) is a member of the ubiquitin C‑terminal hydrolase family of deubiquitinating enzymes and is implicated in transcriptional regulation. The BAP1 gene is mutated in about 10% of patients with clear cell renal cell carcinoma (ccRCC), the most common form of renal cancer, suggesting that BAP1 may be a tumor suppressor. However, whether BAP1 influences the progression of ccRCC tumors expressing WT BAP1 is unclear. Here, we assessed the expression and function of BAP1 using human ccRCC specimens and cell lines.
Project description:PBRM1 is lost in 40% of clear cell renal cell carcinomas (ccRCC) and the combined loss of VHL and PBRM1 drives ccRCC tumorigenesis. PBRM1 is an accessory subunit of the PBAF subclass of the SWI/SNF chromatin remodeler and despite its well-established role as a tumor suppressor, we have limited understanding of how PBRM1 regulates the chromatin. Now we report that PBRM1 binds to promoter-proxy regions with footprints at +1 to + 3 nucleosomes. PBRM1-deficient PBAF complexes lose BRD7 but retain ARID2, while tethered to SMARCA4. The lack of PBRM1-BRD7 module compromises the targeting specificity of the PBAF complexes, causes their genomic redistribution and impairs the repressive ability of PBAF complexes. Subsequently, PBRM1-deficient PBAF complexes prime the chromatin at de novo sites for transcriptional activation of pro-survival genes involved in hypoxia and cholesterol synthesis. Therefore, PBRM1 safeguards the chromatin by repressing aberrant liberation of pro-survival genes by residual PBRM1-deficient SWI/SNF complexes.
Project description:PBRM1 is lost in 40% of clear cell renal cell carcinomas (ccRCC) and the combined loss of VHL and PBRM1 drives ccRCC tumorigenesis. PBRM1 is an accessory subunit of the PBAF subclass of the SWI/SNF chromatin remodeler and despite its well-established role as a tumor suppressor, we have limited understanding of how PBRM1 regulates the chromatin. Now we report that PBRM1 binds to promoter-proxy regions with footprints at +1 to + 3 nucleosomes. PBRM1-deficient PBAF complexes lose BRD7 but retain ARID2, while tethered to SMARCA4. The lack of PBRM1-BRD7 module compromises the targeting specificity of the PBAF complexes, causes their genomic redistribution and impairs the repressive ability of PBAF complexes. Subsequently, PBRM1-deficient PBAF complexes prime the chromatin at de novo sites for transcriptional activation of pro-survival genes involved in hypoxia and cholesterol synthesis. Therefore, PBRM1 safeguards the chromatin by repressing aberrant liberation of pro-survival genes by residual PBRM1-deficient SWI/SNF complexes.
Project description:PBRM1 is a subunit of the PBAF (SWI/SNF) chromatin remodelling complex that is mutated in approximately 40% of clear cell renal cell carcinomas (ccRCC). PBRM1 loss has been implicated in the response to immune checkpoint inhibitor (ICI) therapy in ccRCC. However, it is unclear how PBRM1 influences this. DNA damage-induced inflammatory signalling is an important factor determining ICI therapy response. This response is kept in check by the G2/M checkpoint, which prevents progression through mitosis with unrepaired damage. Here, we show that PBRM1 is required for p53-dependent maintenance of the G2/M checkpoint. In its absence, p53-dependent transcriptional upregulation of p21 is delayed, leading to defective repression of DREAM complex targets and premature entry into mitosis. Consequently, DNA damage induced inflammatory signalling pathways are activated by cytosolic DNA. Notably, p53 is infrequently mutated in ccRCC, so PBRM1 mutational status is critical to G2/M checkpoint maintenance following DNA damage in this cancer. These findings have implications for ICI therapy responses in ccRCC.
Project description:Comprehensive sequencing of human cancers has identified recurrent mutations in genes encoding chromatin regulatory proteins. For clear cell renal cell carcinoma (ccRCC), three of the five commonly mutated genes encode the chromatin regulators PBRM1, SETD2, and BAP1. How these mutations alter the chromatin landscape and transcriptional program in ccRCC or other cancers is not understood. Here, we identified alterations in chromatin organization and transcript profiles associated with mutations in chromatin regulators in a large cohort of primary human kidney tumors. By associating variation in chromatin organization with mutations in SETD2, which encodes the enzyme responsible for H3K36 trimethylation, we found that changes in chromatin accessibility occurred primarily within actively transcribed genes. This increase in chromatin accessibility was linked with widespread alterations in RNA processing, including intron retention and aberrant splicing, affecting approximately 25% of all expressed genes. Further, decreased nucleosome occupancy proximal to misspliced exons was observed in tumors lacking H3K36me3. These results directly link mutations in SETD2 to chromatin accessibility changes and RNA processing defects in cancer. Detecting the functional consequences of specific mutations in chromatin regulatory proteins in primary human samples could ultimately inform the therapeutic application of an emerging class of chromatin-targeted compounds. Additional file: MutationAnnotation.txt- contains sample ID, location of variant on hg19, reference allele, alternate allele, reference depth, alternate depth, frequency, confidence score, gene symbol, mutation type, mutation location (transcript ID and exon number, if applicable), and amino acid change.