ABSTRACT: Comparative analysis of hESCs and iPSCs-derived hepatocyte-like cells reveals current drawbacks and possible strategies for improved differentiation
Project description:Two independent protocols for deriving HLCs from hESCs and iPSCs were adopted and further characterization included immunocytochemistry, real-time RT-PCR, and in vitro functional assays. Comparative microarray-based gene expression profiling was conducted on these cells and compared to the transcriptomes of human fetal liver and adult liver progenitors. HLCs derived from hESCs and hiPSCs showed significant functional similarities, similar expression of genes important for liver physiology and common pathways. However, specific differences between the two cell types could be observed. Total RNA obtained from undifferentiated hESCs, iPSCs, HLCs (hepatocyte-like cells)-derived from hESCs and iPSCs, fetal forskin fibroblasts and fetal liver.
Project description:Purpose: We previously reported the generation of corneal endothelial cells (CECs) using the human peripheral blood mononuclear cells (PBMC)-originated induced pluripotent stem cells (iPSCs). Herein, we extend our analysis through RNA-Seq based transcriptome profiling of H9 human embryonic stem cells (hESCs)- and iPSCs-derived CECs. Methods: The PBMC obtained from a healthy donor were subjected to generate iPSCs using Sendai-virus delivery system Cytotune 2.0 whereas the H9 hESCs were obtained commercially. Both hESCs and iPSCs were subjected to the 20-day procedure according to our previously published CECs generation method. The differentiated CECs were characterized by immunocytochemistry. Total RNA from hESCs- and iPSCs-derived CECs was used for the preparation of RNA-Seq libraries, which were sequenced on HiSeq 2500 system. The raw RNA-Seq reads were processed and analyzed using Lasergene Genomics Suite and the expression profiles were examined for differential expression using Spotfire DecisionSite with Functional Genomics. Results: The hESCs and iPSCs were differentiated into CECs through multipotent neural crest cells (NCCs) using a 20-day procedure. The differentiating CECs on day 20 (D20) exhibited a tightly packed hexagonal/polygonal shape, which expressed CECs-associated markers, zona occludens-1 and N-cadherin at the cell boundaries. A total of 180.18, and 179.01 million reads were obtained for hESCs- and iPSCs-derived CECs, respectively. Of these, >97% reads aligned to the human reference genome resulting in >250x sequence coverage for both hESCs- and iPSCs-derived CECs. Additional analysis identified expression (≥ 0.659 RPKM) of 13,561 and 13,551 genes in hESCs- and iPSCs-derived CECs, respectively, representing ~68% of the total human protein-coding transcriptome expressed in these CECs. Finally, a comparative analysis of both hESCs- and iPSCs-derived CECs transcriptomes identified >95% similarity at the gene level. Conclusion: These analyses reveal an overall similar transcriptional profile in both hESCs- and iPSCs-derived CECs.
Project description:Purpose: To investigate the transcriptomes of H9 human embryonic stem cells (hESCs)- and peripheral blood mononuclear cells (PBMC) originated induced pluripotent stem cells (iPSCs)-derived early stage lentoid bodies at day 24 through RNA-Seq based whole transcriptome sequencing. Methods: The PBMC obtained from a healthy donor were subjected to generate iPSCs using Sendai-virus delivery system Cytotune 2.0 whereas the H9 hESCs were obtained commercially. Both hESCs and iPSCs were differentiated into lentoid bodies using “fried egg” method with feeder-free conditions as described previously. The differentiating lentoid bodies were examined for the expression of lens-specific and pluripotency markers at days 0, 6, 10, 15 and 24 by quantitative real-time PCR (qRT-PCR). Briefly, four biological replicates for each hESCs- and iPSC-derived lentoid bodies at day 24 were used for the RNA-Seq library preparation followed by sequencing on a single lane of HiSeq 2500. The raw reads were processed and analyzed using Lasergene Genomics Suite and the expression profiles were examined for differential expression using Spotfire DecisionSite with Functional Genomics. Results: The differentiating lentoid bodies at day 24 revealed transparent lens like morphological features with an increased expression of lens-specific markers including CRYGC. A total of 193.41, and 170.00 million reads were obtained for hESCs- and iPSCs-derived lentoid bodies, respectively. Of these, >96% reads aligned to the human reference genome resulting in >200x sequence coverage for both hESCs- and iPSCs-derived lentoid bodies. Additional analysis identified expression (≥ 0.659 RPKM) of 13,991 and 14,018 genes in hESCs- and iPSCs-derived lentoid bodies, respectively, representing ~70% of the total human protein-coding transcriptome expressed in lentoid bodies. Finally, a comparative analysis of both hESCs- and iPSCs-derived lentoid bodies transcriptomes identified >96% similarity at the gene level. Conclusion: The transcriptome analysis revealed an overall similar transcriptional profile in both hESCs- and iPSCs-derived lentoid bodies during differentiation at day 24.
Project description:Induced pluripotent stem cells (iPSCs) and human embryonic stem cells (hESCs) can be differentiated into hepatocyte-like cells (HLCs) and thus provide a defined and renewable source for toxicology and regenerative medicine. Critical comparison of patient-specific iPSCs to the golden standard—hESCs will provide an assessment of their strengths and weaknesses. This dataset consists of data at the transcriptional level during the differentiation process of hESCs into HLCs including the definite endoderm (DE) and hepatic endoderm (HE) stages. Besides for the study of this in-vitro-hepatogenesis model, it can be used as reference for investigating the differences and similarities between iPSC and hESC cellular models during hepatogenesis.
Project description:Induced pluripotent stem cells (iPSCs) have been generated from various somatic cells under feeder-layer conditions. These feeder-derived iPSCs generated in different labs exhibit greater variability than between different traditional embryo derived hESC lines. For that reason, it is important to develop a standard and defined system for deriving autologous patient stem cells. We have generated iPSCs under feeder-free conditions using Matrigel coated vessels in chemically defined medium, mTeSR1. These feeder-free derived iPSCs are in many ways similar to feeder-derived iPSCs and also to hESCs, with respect to their pluripotent gene expression (OCT4, NANOG, SOX2), protein expression (OCT4, NANOG, SSEA4, TRA160) and differentiation capabilities. We conducted a whole genomic transcript analysis using Affymetrix Human Gene 1.0 ST arrays to elucidate the important differences between traditional feeder-derived iPSCs and feeder-free derived iPSCs. We reveal that feeder-free iPSCs have over-represented terms belonging to DNA replication and cell cycle genes which are lacking in feeder-derived iPSCs. Feeder-free iPSCs are in many aspects more similar to hESCs including; apoptosis, chromatin modification enzymes and mitochondrial energy metabolism. We have also identified potential biomarkers for fully reprogrammed iPSCs (FRZB) and partially reprogrammed iPSCs (POTEG, MX2) based on their expression trends across all cell types. In conclusion, feeder-free derived iPSCs is transcriptomically more similar to hESCs than feeder derived iPSCs, in many biological functions. For each cell sample, 2 or 3 biological replicates were obtained.
Project description:Induced pluripotent stem cells (iPSCs) have been generated from various somatic cells under feeder-layer conditions. These feeder-derived iPSCs generated in different labs exhibit greater variability than between different traditional embryo derived hESC lines. For that reason, it is important to develop a standard and defined system for deriving autologous patient stem cells. We have generated iPSCs under feeder-free conditions using Matrigel coated vessels in chemically defined medium, mTeSR1. These feeder-free derived iPSCs are in many ways similar to feeder-derived iPSCs and also to hESCs, with respect to their pluripotent gene expression (OCT4, NANOG, SOX2), protein expression (OCT4, NANOG, SSEA4, TRA160) and differentiation capabilities. We conducted a whole genomic transcript analysis using Affymetrix Human Gene 1.0 ST arrays to elucidate the important differences between traditional feeder-derived iPSCs and feeder-free derived iPSCs. We reveal that feeder-free iPSCs have over-represented terms belonging to DNA replication and cell cycle genes which are lacking in feeder-derived iPSCs. Feeder-free iPSCs are in many aspects more similar to hESCs including; apoptosis, chromatin modification enzymes and mitochondrial energy metabolism. We have also identified potential biomarkers for fully reprogrammed iPSCs (FRZB) and partially reprogrammed iPSCs (POTEG, MX2) based on their expression trends across all cell types. In conclusion, feeder-free derived iPSCs is transcriptomically more similar to hESCs than feeder derived iPSCs, in many biological functions.
Project description:The gene expression profiles of differentiating human pluripotent stem cells (hPSCs) were analyzed by DNA microarray. We identified differences and commonalities among six human pluripotent stem cell lines: the hESCs KhES1, KhES2, KhES3, and H1, and the iPSCs 201B7 and 243G1. Analysis of DNA microarray data suggested that hepatocyte-like differentiation of EBs treated with ammonia in Lanford medium.
Project description:Recent studies suggested that embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) may represent different pluripotent states as defined by gene expression profiles and differentiation potential. Here we addressed a contribution of a lineage stage-specific donor cell memory in modulating the functional properties of iPSCs. iPSCs were generated from hepatic lineage cells at an early (hepatoblast-derived, HB-iPSCs) and end stage (adult hepatocyte, AH-iPSCs) of hepatocyte differentiation as well as from mouse fetal fibroblasts (MEF-iPSCs) using a lentiviral vector encoding four pluripotency-inducing factors Oct4, Sox2, Klf4, and c-Myc. All resulting iPS cell lines acquired iPSCs phenotype as judged by the accepted criteria including morphology, expression of pluripotency markers, silencing of transducing factors, capacity of multilineage differentiation in teratoma assay and normal diploid karyotype. However, hepatoblasts were more susceptible to reprogramming than either AH or MEF, and HB-iPSCs were more efficient in directed differentiation towards hepatocytic lineage as compared to AH-iPSCs, MEF-iPSCs or mESCs. Extensive comparative transcriptome analyses of the early passage iPSCs, donor cells and mESCs revealed that despite global similarities in gene expression patterns between generated iPSCs and mESCs, HB-iPSCs retained a transcriptional memory (7 up- and 20 down-regulated genes) typical of the original cells. Continuous passaging of HB-iPSCs abolished most of these differences including a superior capacity of hepatic re-differentiation. These results suggest that retention of lineage stage-specific donor memory in iPSCs may facilitate differentiation into donor cell type. The identified gene set may be helpful to improve hepatic differentiation for therapeutic application in liver disease modeling. A total of 200 ng RNA from four independent biological replicates of MACS-sorted mESC and iPSC were linearly amplified according to manufactures’ specification (Ambion, Austin, Tx,). For in vitro transcription (IVT), reactions were incubated for 16 h at 37ºC. The efficiency of the single round amplification was measured by NanoDrop (ND1000, Thermo Scientific). Hybridization, washing, detection (Cy3-streptavidin, Amersham Biosciences, GE Healthcare), and scanning were performed on an illumina iScan system (Illumina) using reagents and following protocols supplied by the manufacturer. The biotinylated cRNA (750 ng/sample) was hybridized on Sentrix beadchips human Ref-8v3 for 18 h at 58ºC while rocking (5 rpm).