Project description:We use mRNA-seq to transcriptionally profile larval fat body and midgut tissues from Drosophila third instar larvae. These data provide insights into tissue physiology and can be used to identify tissue specific transcripts.
Project description:Survival of insects on a substrate containing toxic substances such as plant secondary metabolites or insecticides is dependent on the metabolism or excretion of those xenobiotics. The primary sites of xenobiotic metabolism are the midgut, Malpighian tubules and fat body. In general, these organs are treated as single tissues by online databases, but several studies have shown that gene expression within subsections of the midgut is compartmentalized. In this article, RNA sequencing analysis was used to investigate whole-genome expression in subsections of the third-instar larval midgut. The results support functional diversification in subsections of the midgut. Analysis of the expression of gene families that are implicated in the metabolism of xenobiotics suggests that metabolism may not be uniform along the midgut. These data provide a starting point for investigating gene expression and xenobiotic metabolism in the larval midgut.
Project description:We use mRNA-seq to transcriptionally profile larval fat body and midgut tissues from Drosophila third instar larvae. These data provide insights into tissue physiology and can be used to identify tissue specific transcripts. Fat bodies from wandering third instar larvae were dissected from ~50 male larvae and gonads were removed to eliminate contaminating transctips from the gonads. Larval midguts were dissected from ~50 wandering third instar larvae. Larval tissues were removed to Graces unsupplemented medium on ice prior to RNA extraction with TRIzol reagent. mRNA-seq samples were prepared from 5ug of total RNA and subject to Illumina based sequencing.
Project description:Survival of insects on a substrate containing toxic substances such as plant secondary metabolites or insecticides is dependent on the metabolism or excretion of those xenobiotics. The primary sites of xenobiotic metabolism are the midgut, Malpighian tubules and fat body. In general, these organs are treated as single tissues by online databases, but several studies have shown that gene expression within subsections of the midgut is compartmentalized. In this article, RNA sequencing analysis was used to investigate whole-genome expression in subsections of the third-instar larval midgut. The results support functional diversification in subsections of the midgut. Analysis of the expression of gene families that are implicated in the metabolism of xenobiotics suggests that metabolism may not be uniform along the midgut. These data provide a starting point for investigating gene expression and xenobiotic metabolism in the larval midgut. Examination of expression in eight samples corresponding to compartments of gene expression in the midgut
Project description:We used RNA-seq in a derived European Drosophila melanogaster population from Germany (MU) to examine coding gene expression variation in the larval fat body during the late wandering third instar stage.