Project description:Analysis of strain-specific differences in gene expression in brains from a hydrocephalic mouse model of primary ciliary dyskinesia. The results identify genes that are differentially expressed between C57BL6/J and 129S6/SvEvTac brains. These genes encode proteins that function in a variety of cellular processes and include some that are relevant to hydrocephalus and cilia function, providing insight into the mechanisms underlying susceptibility to hydrocephalus.
Project description:Dynein axonemal heavy chain 5 (DNAH5) is the most mutated gene in primary ciliary dyskinesia (PCD), leading to abnormal cilia ultrastructure and function. Few studies have revealed the genetic characteristics and pathogenetic mechanisms of PCD caused by DNAH5 mutation. Here, we established a child PCD airway organoid directly from the bronchoscopic biopsy of a patient with DNAH5 mutation. We found abnormal ciliary function and a decreased immune response caused by DNAH5 mutation through proteomic analyses.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:We performed whole genome gene expression profiling in bronchial biopsies from PCD patients. We used the Quality Threshold clustering algorithm to identify groups of genes that revealed highly correlated RNA expression patterns in the biopsies. The largest cluster contained 372 genes and was significantly enriched for genes related to cilia. The database and literature search showed that 16250 genes in this cluster were known cilia genes, strongly indicating that the remaining 21022 genes were likely to be new cilia genes. The tissue expression pattern of the 210 new cilia genes and the 162 known genes was consistent with the presence of motile cilia in a given tissue. Analysis of the upstream promotor sequences revealed evidence for RFX transcription factors binding site motif in both subgroups. Total RNA obtained from 6 primary ciliary dyskinesia patients and 9 control individuals
Project description:Dynein axonemal heavy chain 5 (DNAH5) is the most mutated gene in primary ciliary dyskinesia (PCD), leading to abnormal cilia ultrastructure and function. Few studies have revealed the genetic characteristics and pathogenetic mechanisms of PCD caused by DNAH5 mutation. Here, we established a child PCD airway organoid directly from the bronchoscopic biopsy of a patient with DNAH5 mutation. We found abnormal ciliary function and a decreased immune response caused by DNAH5 mutation through single-cell RNA sequencing (scRNA-seq).