Project description:This SuperSeries is composed of the following subset Series: GSE25046: Identification of DNA Methylation Markers for Lineage Commitment of in vitro Hepatogenesis [mRNA profiling] GSE25047: Identification of DNA Methylation Markers for Lineage Commitment of in vitro Hepatogenesis [methylation profiling] Refer to individual Series
Project description:Hepatocytes that have differentiated from human embryonic stem cells have great potential for the treatment of liver disease as well as for drug testing. Moreover, in vitro hepatogenesis is a powerful model system for studying the molecular mechanisms underlying liver development. DNA methylation is an important epigenetic mechanism that influences differential gene expression during embryonic development. We profiled gene expression and DNA methylation of three cell states of in vitro hepatogenesis—human embryonic stem cells, endoderm progenitors, and mature hepatocytes—using microarray analysis. Among 525 state-specific expressed genes, 67 showed significant negative correlation between gene expression and DNA methylation. State-specific expression and methylation of target genes were validated by quantitative reverse transcription–PCR and pyrosequencing, respectively. To elucidate genome-scale methylation changes beyond the promoter, we also performed high-throughput sequencing of methylated DNA captured by MBD2 protein [see SRA link below]. We found dynamic methylation changes in intergenic regions of the human genome during differentiation. Conclusion: This study provides valuable methylation markers for the lineage commitment of in vitro hepatogenesis and should help elucidate the molecular mechanisms underlying stem cell differentiation and liver development.
Project description:Hepatocytes that have differentiated from human embryonic stem cells have great potential for the treatment of liver disease as well as for drug testing. Moreover, in vitro hepatogenesis is a powerful model system for studying the molecular mechanisms underlying liver development. DNA methylation is an important epigenetic mechanism that influences differential gene expression during embryonic development. We profiled gene expression and DNA methylation of three cell states of in vitro hepatogenesis—human embryonic stem cells, endoderm progenitors, and mature hepatocytes—using microarray analysis. Among 525 state-specific expressed genes, 67 showed significant negative correlation between gene expression and DNA methylation. State-specific expression and methylation of target genes were validated by quantitative reverse transcription–PCR and pyrosequencing, respectively. To elucidate genome-scale methylation changes beyond the promoter, we also performed high-throughput sequencing of methylated DNA captured by MBD2 protein [see SRA link below]. We found dynamic methylation changes in intergenic regions of the human genome during differentiation. Conclusion: This study provides valuable methylation markers for the lineage commitment of in vitro hepatogenesis and should help elucidate the molecular mechanisms underlying stem cell differentiation and liver development.
Project description:Hepatocytes that have differentiated from human embryonic stem cells have great potential for the treatment of liver disease as well as for drug testing. Moreover, in vitro hepatogenesis is a powerful model system for studying the molecular mechanisms underlying liver development. DNA methylation is an important epigenetic mechanism that influences differential gene expression during embryonic development. We profiled gene expression and DNA methylation of three cell states of in vitro hepatogenesis—human embryonic stem cells, endoderm progenitors, and mature hepatocytes—using microarray analysis. Among 525 state-specific expressed genes, 67 showed significant negative correlation between gene expression and DNA methylation. State-specific expression and methylation of target genes were validated by quantitative reverse transcription–PCR and pyrosequencing, respectively. To elucidate genome-scale methylation changes beyond the promoter, we also performed high-throughput sequencing of methylated DNA captured by MBD2 protein [see SRA link below]. We found dynamic methylation changes in intergenic regions of the human genome during differentiation. Conclusion: This study provides valuable methylation markers for the lineage commitment of in vitro hepatogenesis and should help elucidate the molecular mechanisms underlying stem cell differentiation and liver development. ES, EP, and MH methylation assays were run in triplicate. Genomic DNA (1 µg) from each sample was bisulfite converted using the EZ DNA methylation kit (Zymo Research, Orange, CA), and 200 ng of the converted DNA was used for amplification. Amplified DNA was hybridized to the Infinium HumanMethylation27 BeadChip (Illumina), which analyzes the methylation status of 27,578 CpG sites selected from more than 14,495 well-annotated genes. The arrays were imaged using the BeadArray Reader, and image processing and extraction of intensity data were performed according to Illumina’s instructions. Each methylation signal was used to compute the β value, which is a quantitative measure of DNA methylation ranging from 0 (for completely unmethylated cytosines) to 1 (for completely methylated cytosines).
Project description:Hepatocytes that have differentiated from human embryonic stem cells have great potential for the treatment of liver disease as well as for drug testing. Moreover, in vitro hepatogenesis is a powerful model system for studying the molecular mechanisms underlying liver development. DNA methylation is an important epigenetic mechanism that influences differential gene expression during embryonic development. We profiled gene expression and DNA methylation of three cell states of in vitro hepatogenesis—human embryonic stem cells, endoderm progenitors, and mature hepatocytes—using microarray analysis. Among 525 state-specific expressed genes, 67 showed significant negative correlation between gene expression and DNA methylation. State-specific expression and methylation of target genes were validated by quantitative reverse transcription–PCR and pyrosequencing, respectively. To elucidate genome-scale methylation changes beyond the promoter, we also performed high-throughput sequencing of methylated DNA captured by MBD2 protein [see SRA link below]. We found dynamic methylation changes in intergenic regions of the human genome during differentiation. Conclusion: This study provides valuable methylation markers for the lineage commitment of in vitro hepatogenesis and should help elucidate the molecular mechanisms underlying stem cell differentiation and liver development. ES, EP, and MH expression assays were run in quadruplicate. RNA isolated from the cell line at the indicated time points was used for gene expression analysis using the Human-6 Whole-Genome Expression BeadChip (Illumina, San Diego, CA), which generates expression profiles for more than 46,000 human transcripts. Biotin-labeled cRNA was produced using a linear amplification kit (Ambion, Austin, TX) using 300 ng of quality-checked total RNA as input. Chip hybridizations, washing, Cy3-streptavidin staining, and scanning were performed on a BeadArray Reader (Illumina) platform using reagents and following protocols supplied by the manufacturer. The detection score was used to determine expression
Project description:Polycomb Repressive Complex 2 (PRC2) catalyzes histone H3 lysine 27 tri-methylation, an epigenetic modification associated with gene repression. H3K27me3 is enriched at the promoters of a large cohort of developmental genes in embryonic stem cells (ESCs). Loss of H3K27me3 leads to a failure of ESCs to properly differentiate, which presents a major roadblock for dissecting the precise roles of PRC2 activity during lineage commitment. While recent studies suggest that loss of H3K27me3 leads to changes in DNA methylation in ESCs, how these two pathways coordinate to regulate gene expression programs during lineage commitment is poorly understood. Here, we analyzed gene expression and DNA methylation levels in several PRC2 mutant ESC lines that maintain varying levels of H3K27me3. We found that maintenance of intermediate levels of H3K27me3 allowed for proper temporal activation of lineage genes during directed differentiation of ESCs to spinal motor neurons (SMNs). However, genes that function to specify other lineages failed to be repressed, suggesting that PRC2 activity is necessary for lineage fidelity. We also found that H3K27me3 is antagonistic to DNA methylation in cis. Furthermore, loss of H3K27me3 leads to a gain in promoter DNA methylation in developmental genes in ESCs and in lineage genes during differentiation. Thus, our data suggest a role for PRC2 in coordinating dynamic gene repression while protecting against inappropriate promoter DNA methylation during differentiation. Embryonic Stem Cell (ESC) lines mutant for PRC2 core components Suz12 (Suz12GT and Suz12delta) and Eed (Eednull) were subjected to in vitro directed differentiation down the spinal motor neuron lineage. ESCs and day 5 differentiated cells from the three mutant lines and wild-type were used for Reduced Representation Bisulfite Sequencing (RRBS).
Project description:Polycomb Repressive Complex 2 (PRC2) catalyzes histone H3 lysine 27 tri-methylation, an epigenetic modification associated with gene repression. H3K27me3 is enriched at the promoters of a large cohort of developmental genes in embryonic stem cells (ESCs). Loss of H3K27me3 leads to a failure of ESCs to properly differentiate, which presents a major roadblock for dissecting the precise roles of PRC2 activity during lineage commitment. While recent studies suggest that loss of H3K27me3 leads to changes in DNA methylation in ESCs, how these two pathways coordinate to regulate gene expression programs during lineage commitment is poorly understood. Here, we analyzed gene expression and DNA methylation levels in several PRC2 mutant ESC lines that maintain varying levels of H3K27me3. We found that maintenance of intermediate levels of H3K27me3 allowed for proper temporal activation of lineage genes during directed differentiation of ESCs to spinal motor neurons (SMNs). However, genes that function to specify other lineages failed to be repressed, suggesting that PRC2 activity is necessary for lineage fidelity. We also found that H3K27me3 is antagonistic to DNA methylation in cis. Furthermore, loss of H3K27me3 leads to a gain in promoter DNA methylation in developmental genes in ESCs and in lineage genes during differentiation. Thus, our data suggest a role for PRC2 in coordinating dynamic gene repression while protecting against inappropriate promoter DNA methylation during differentiation. Embryonic Stem Cell (ESC) lines mutant for PRC2 core components Suz12 (Suz12GT and Suz12delta) and Eed (Eednull) were subjected to in vitro directed differentiation down the spinal motor neuron lineage. ESCs and day 5 differentiated cells from the three mutant lines and wild-type were used for H3K27me3 ChIP-seq.
Project description:Polycomb Repressive Complex 2 (PRC2) catalyzes histone H3 lysine 27 tri-methylation, an epigenetic modification associated with gene repression. H3K27me3 is enriched at the promoters of a large cohort of developmental genes in embryonic stem cells (ESCs). Loss of H3K27me3 leads to a failure of ESCs to properly differentiate, which presents a major roadblock for dissecting the precise roles of PRC2 activity during lineage commitment. While recent studies suggest that loss of H3K27me3 leads to changes in DNA methylation in ESCs, how these two pathways coordinate to regulate gene expression programs during lineage commitment is poorly understood. Here, we analyzed gene expression and DNA methylation levels in several PRC2 mutant ESC lines that maintain varying levels of H3K27me3. We found that maintenance of intermediate levels of H3K27me3 allowed for proper temporal activation of lineage genes during directed differentiation of ESCs to spinal motor neurons (SMNs). However, genes that function to specify other lineages failed to be repressed, suggesting that PRC2 activity is necessary for lineage fidelity. We also found that H3K27me3 is antagonistic to DNA methylation in cis. Furthermore, loss of H3K27me3 leads to a gain in promoter DNA methylation in developmental genes in ESCs and in lineage genes during differentiation. Thus, our data suggest a role for PRC2 in coordinating dynamic gene repression while protecting against inappropriate promoter DNA methylation during differentiation. Embryonic Stem Cell (ESC) lines mutant for PRC2 core components Suz12 (Suz12GT and Suz12delta) and Eed (Eednull) were subjected to in vitro directed differentiation down the spinal motor neuron lineage. ESCs and day 5 differentiated cells from the three mutant lines and wild-type were used for RNA-seq.