Project description:Cell lines play an important role for studying tumor biology and novel therapeutic agents. We demonstrated that cell lines represent a useful and reliable in vitro system for studying basic mechanisms in lung cancer. Moreover, we presented 3 novel, comprehensively characterized SCC cell lines. Establishment and Comparative Characterization of Three Non-Small Cell Lung Cancer Cell Lines and Their Corresponding Tumor Tissue
Project description:Array comparative genomic hybridization characterization and comparison of cell lines from 9 different cancer tissue of origin types (Breast, Central Nervous System, Colon, Leukemia, Melanoma, Non-Small Cell Lung, Ovarian, Prostate, Renal) from NCI-60 panel.
Project description:Characterization of 63 small cell lung cancer (SCLC) cell lines and a comparator set of non-small cell lung cancer and normal counterpart cells, including drug sensitivity testing, gene expression profiling and microRNA expression profiling have been completed. Data and tools for searching these data will be made publicly available through the NCI Developmental Therapeutics Program at http://SCLC.cancer.gov. SCLC is an aggressive, recalcitrant cancer and have seen limited treatment advances in the last 30 years. Drug sensitivity data coupled with the transcription and microRNA profiles of a cohort of SCLC cell lines may help define novel treatment paradigms.
Project description:Establishment and molecular characterization of 239 peritoneally-metastatic cancer cell lines from 170 patients’ ascites in 11 kinds of cancers mainly consisted of gastric, pancreatic, and ovarian cancer. We performed comparative transcriptome analyses using microarrays between our established cancer cell lines and cell-bank derived cancer cell lines
Project description:Current clinical therapy of non-small cell lung cancer depends on histo-pathological classification. This approach poorly predicts clinical outcome for individual patients. Proteogenomic characterization analysis holds promise to improve clinical stratification, thus paving the way for individualized therapy. We investigated proteogenomic characterization and performed comprehensive integrative genomic analysis of human large cell lung cancer. Here we analyzed proteomes of 29 paired normal lung tissues and large cell lung cancer, identified significantly deregulated proteins associated with large cell lung cancer.
Project description:Snail is a zinc-finger transcription factor best known for its ability to down-regulate E-cadherin. Its established significance in embryology and organogenesis has been expanded to include a role in the tumor progression of a number of human cancers. In addition to E-cadherin, it has more recently been associated with the down-regulation and up-regulation of a number of other genes that affect important malignant phenotypes. After establishing the presence of up-regulated Snail in human non-small cell lung cancer specimens, we used microarrays to detail the global programme of gene expression in non-small cell lung cancer cell lines stably transduced to over-express Snail as compared to vector control cell lines. Non-small cell lung cancer cell lines (H441, H292, H1437) were stably transduced with a retroviral vector to over-express Snail. Elevated Snail and a corresponding down-regulation of E-cadherin was verified in the Snail over-expressing cell lines as compared to vector control cell lines by Western analysis. RNA extraction was performed and samples submitted to the UCLA Clinical Microarray Core for hybridization to Affymetrix arrays.