Project description:Vibrio species represent one of the most diverse genera of marine bacteria known for their ubiquitous presence in natural aquatic systems. Several members of this genus including Vibrio harveyi are receiving increasing attention lately because they are becoming a source of health problems, especially for some marine organisms widely used in sea food industry. To learn about adaptation changes triggered by V. harveyi during its long-term persistence at elevated temperatures, we studied adaptation of this marine bacterium in sea water microcosms at 30 oC that closely mimicks the upper limits of sea surface temperatures recorded around the globe.
Project description:Seawater exposure to the gram negative marine bacterium Vibrio diazotrophicus induces a robust cellular response in sea urchin larvae that includes the migration of pigment cells to the gut epithelium, changes in cell behavior and altered gut morphology (Ho et al., 2016; PMID 27192936). To investigate the transcriptional underpinnings of this response, whole transcriptome sequencing was performed on mRNA isolated from larval samples collected at 0, 6, 12 and 24 hr of exposure to V. diazotrophicus. The morphological simplicity of the sea urchin larva provides a systems-level model for identifying biologically relevant transcriptional state changes in response to dysbiosis in the gut lumen.
Project description:We compared genetic profiles of planktonic stage to biofilm stage of deep sea bacterium Pseudoalteromonas sp. SM9913 and revealed genetic features during switch from planktonic to pellicle stage in Pseudoalteromonas sp. SM9913.
Project description:Proteorhodopsin phototrophy is expected to have considerable impact on the ecology and biogeochemical roles of marine bacteria. However, the genetic features contributing to the success of proteorhodopsin-containing bacteria remain largely unknown. We investigated the genome of Dokdonia sp. strain MED134 (Bacteroidetes) for features potentially explaining its ability to grow better in light than darkness. MED134 has a relatively high number of peptidases, suggesting that amino acids are the main carbon and nitrogen sources. In addition, MED134 shares with other environmental genomes a reduction in gene copies at the expense of important ones, like membrane transporters, which might be compensated by the presence of the proteorhodopsin gene. The genome analyses suggest Dokdonia sp. MED134 is able to respond to light at least partly due to the presence of a strong flavobacterial consensus promoter sequence for the proteorhodopsin gene. Moreover, Dokdonia sp. MED134 has a complete set of anaplerotic enzymes likely to play a role in the adaptation of the carbon anabolism to the different sources of energy it can use, including light or various organic matter compounds. In addition to promoting growth, proteorhodopsin phototrophy could provide energy for the degradation of complex or recalcitrant organic matter, survival during periods of low nutrients, or uptake of amino acids and peptides at low concentrations. Our analysis suggests that the ability to harness light potentially makes MED134 less dependent on the amount and quality of organic matter or other nutrients. The genomic features reported here may well be among the keys to a successful photoheterotrophic lifestyle.
Project description:The goal of this study was to identify the key functions of the six main symbionts that are hosted in gills of the marine bivalve, Idas modiolaeformis, which lives at deep-sea hydrocarbon seeps and wood falls in the Eastern Atlantic Ocean and the Mediterranean Sea. These symbionts include the main autotrophic methane- and sulfur-oxidizing lineages (Methyloprofundus, Thioglobus, Thiodubillierella), as well as a Methylophagaceae methylotrophic autotroph, a flavobacterial degrader of complex polysaccharides Urechidicola and a Nitrincolaceae heterotroph that specializes in degradation of nitrogen-rich compounds such as peptides and nucleosides. Four I. modiolaeformis individuals were preserved in RNAlater following retrieval from a brine pool habitat in the Eastern Mediterranean at 1,150 m water depth (32° 13.4' N 34° 10.7' E), using a remotely-operated vehicle. RNAlater was discarded after 24 hours, and the specimens were kept at -80°C until DNA/RNA/protein co-extraction using the AllPrep DNA/RNA/Protein Mini Kit (Cat. No. 80004, Qiagen).
Project description:Transcriptional profiling of populations in the clam Ruditapes decussatus determined differentiation in gene-expression along parallel temperature gradients and between races of the Atlantic Ocean and West Mediterranean sea.
Project description:We compared genetic profiles of planktonic stage to biofilm stage of deep sea bacterium Pseudoalteromonas sp. SM9913 and revealed genetic features during switch from planktonic to pellicle stage in Pseudoalteromonas sp. SM9913. mRNA profiles of Pseudoalteromonas sp. SM9913 planktonic cells, initial pellicle cells and mature pellicle cells were generated by Illumina Hiseq2000.