Project description:This study was performed to test the hypothesis that cigarette smoke extract would alter the responses of primary cultures of human bronchial epithelial cells to infection with purified human rhinovirus 16. The data show marked alterations in rhinovirus-induced expression profiles of a number of genes in the presence of cigarette smoke extract (CSE). Cultured epithelial cells from each of 4 donors were exposed to medium alone, rhinovirus 16 (RV16) alone, CSE alone, or RV16 in the presence of CSE. After a 24 h incubation gene expression was assessed.
Project description:This study was performed to test the hypothesis that cigarette smoke extract would alter the responses of primary cultures of human bronchial epithelial cells to infection with purified human rhinovirus 16. The data show marked alterations in rhinovirus-induced expression profiles of a number of genes in the presence of cigarette smoke extract (CSE).
Project description:To investigate the biochemical and genetic alterations that occur in response to cigarette smoke exposure among airway epithelial cells from different sites in the lungs, we performed microarray-based analysis using small airway epithelial cells (SAEC) and normal human bronchial epithelial cells (NHBE) following 24 h of cigarette smoke extract (CSE). In microarray-based analysis, the small airway showed higher susceptibility to CS compared to the large airway, such as enhanced expression of inflammatory-related pathways including the TNF signaling pathway. Among the TNF-related genes, PTGS2, also known as COX-2, showed the greatest difference in expression levels, with higher CSE-induced increments of both mRNA and protein expression in SAEC compared to NHBE.
Project description:To study the effect of cigarette smoke exposure on Sars-Cov2 infection, we directly exposed mucociliary air-liquid interface (ALI) cultures derived from primary human nonsmoker airway basal stem cells (ABSCs) to short term cigarette smoke and infected them with live SARS-CoV-2. We set out to examine the underlying mechanisms governing the increased susceptibility of cigarette smoke exposed ALI cultures to SARS-CoV-2 infection by usingle cell profiling of the cultures, which showed that interferon response genes were induced in SARS-CoV-2 infected airway epithelial cells in ALI cultures but smoking exposure together with SARS-CoV-2 infection reduced the interferon response.
Project description:Airway epithelial cells are the first cells of the lungs to be exposed to the toxic agents contained within cigarette smoke. Accordingly, the response of these cells to this challenge is of considerable interest in the context of diseases in which cigarette smoke is a major aetiological factor. We used Affymetrix microarrays to study the effects of repeated cigarette smoke challenge on three-dimensional human lung airway epithelial cultures.
Project description:Airway epithelial cells are the first cells of the lungs to be exposed to the toxic agents contained within cigarette smoke. Accordingly, the response of these cells to this challenge is of considerable interest in the context of diseases in which cigarette smoke is a major aetiological factor. We used Affymetrix microarrays to study the effects of repeated cigarette smoke challenge on three-dimensional human lung airway epithelial cultures. We have used cultures from four individual donors, and compared the effects of repeated cigarette smoke challenge (30mins exposure on four separate days), with no challenge.
Project description:Human alveolar epithelial cells were exposed to cigarette smoke extract (CSE) for 1, 3 and 5 weeks at 1%, 5% and 10%, and gene expression was evaluated by complete transcriptome microarrays. In this study we explored the effect of cigarette smoke on the gene expression profile.
Project description:Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Despite modest advances in the diagnosis and treatment of infections by these viruses, novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. From these data, we constructed a transcriptional regulatory network model that revealed shared and unique host responses to these viral infections such that after a lag of 4-8 hours, most cell host responses were similar for both viruses, while divergent host cell responses appeared after 24-48 hours. The similarities and differences in gene expression after epithelial infection of rhinovirus, influenza virus, or both viruses together revealed qualitative and quantitative differences in innate immune activation and regulation. These differences help explain the generally mild outcome of rhinovirus infections compared to influenza infections which can be much more severe. Human bronchial epithelial cells (BEAS-2B) were infected with rhinovirus, influenza virus or both viruses and RNAs were then profiled at 10 time points (2, 4, 6, 8, 12, 24, 26, 48, 60 and 72hrs)