Project description:Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a critical regulator of cell growth by integrating multiple signals (nutrients, growth factors, energy and stress) and is frequently deregulated in many types of cancer. We used a robust experimental paradigm involving the combination of two interventions, one genetic and one pharmacologic to identify genes regulated transcriptionally by mTORC1. In Tsc2+/+, but not Tsc2-/- immortalized mouse embryo fibroblasts (MEFs), serum deprivation downregulates mTORC1 activity. In Tsc2-/- cells, abnormal mTORC1 activity can be downregulated by treatment with rapamycin (sirolimus). By contrast, rapamycin has little effect on mTORC1 in Tsc2+/+ cells in which mTORC1 is already inhibited by low serum. Thus, under serum deprived conditions, mTORC1 activity is low in Tsc2+/+ cells (untreated or rapamycin treated), high in Tsc2-/- cells, but lowered by rapamycin; a pattern referred to as a M-bM-^@M-^\low/low/high/lowM-bM-^@M-^] or M-bM-^@M-^\LLHLM-bM-^@M-^]. We found that mTORC1 regulated the expression of, among other lysosomal genes, V-ATPases through the transcription factor EB (TFEB, Tcfeb in the mouse). The knockdown of Tfeb resulted in the 'flattening' of the LLHL pattern and allowed the identification of genes regulated by mTORC1 through Tfeb Mouse embryo fibroblasts (MEFs) wild type or deficient in Tsc2 expressing a Tfeb shRNA or scrambled shRNA vector were treated with 25 nM rapamycin or vehicle (methanol) for 24 h under low serum conditions (0.1% FBS)
Project description:Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a critical regulator of cell growth by integrating multiple signals (nutrients, growth factors, energy and stress) and is frequently deregulated in many types of cancer. We used a robust experimental paradigm involving the combination of two interventions, one genetic and one pharmacologic to identify genes regulated transcriptionally by mTORC1. In Tsc2+/+, but not Tsc2-/- immortalized mouse embryo fibroblasts (MEFs), serum deprivation downregulates mTORC1 activity. In Tsc2-/- cells, abnormal mTORC1 activity can be downregulated by treatment with rapamycin (sirolimus). By contrast, rapamycin has little effect on mTORC1 in Tsc2+/+ cells in which mTORC1 is already inhibited by low serum. Thus, under serum deprived conditions, mTORC1 activity is low in Tsc2+/+ cells (untreated or rapamycin treated), high in Tsc2-/- cells, but lowered by rapamycin; a pattern referred to as a “low/low/high/low” or “LLHL”. We found that mTORC1 regulated the expression of, among other lysosomal genes, V-ATPases through the transcription factor EB (TFEB, Tcfeb in the mouse). The knockdown of Tfeb resulted in the 'flattening' of the LLHL pattern and allowed the identification of genes regulated by mTORC1 through Tfeb
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is activated by nutrition sufficiency signals and extracellular growth signals. mTORC1 acts the hub that integrates these inputs to orchestrate number of cellular responses such as translation, nucleotide synthesis, lipid synthesis, and lysosome biogenesis. However, the scaffold protein which specifically regulates any single downstream signaling molecule has not been identified to date. Here we show the heteropentamer protein complex Ragulator is critically required to regulate nuclear translocation of transcription factor EB (TFEB). We established a unique RAW264.7 clone that lacks Ragulator but maintained total mTORC1 activity. The clone showed a markedly enhanced nuclear translocation of TFEB even in nutrition-sufficient state, despite the full mTORC1 activity. As a cellular phenotype, the number of lysosomes were increased by 10 times in the Ragulator-deficient clone. These findings suggest that mTORC1 essentially requires the scaffold Ragulator to regulate the subcellular location of TFEB. Our finding implicates that mTORC1 has other scaffold proteins that regulate downstream molecules specifically.
Project description:Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent research demonstrates that the placenta adapts to nutrient insufficiency through mTOR inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype directing extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. Endogenous TFEB deficiency significantly impaired STB differentiation in trophoblast cells and placenta organoids. Mechanistically, TFEB conferred direct transcriptional regulation of the fusogen ERVFRD-1 in human trophoblasts and thereby profoundly promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. In line with the in vitro findings, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Moreover, TFEB directs the trophoblast syncytialization response driven by mTORC1 signaling. Importantly, TFEB expression positively correlates with the reinforced trophoblast syncytialization in human fetal growth restriction (FGR) placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.