Project description:The pathogenesis of paediatric central nervous system tumours is still poorly understood. In an attempt to increase the knowledge of the genetic mechanisms underlying these tumours, we performed genome-wide screening of 17 paediatric gliomas and embryonal tumours using a combination of G-band karyotyping and array comparative genomic hybridisation (aCGH). G-banding revealed abnormal karyotypes in 56% of tumour samples (9 of 16; one failed in culture), whereas aCGH analysis found copy number aberrations in all 13 tumours that could be examined. Pilocytic astrocytomas (n=3) showed normal karyotypes or simple non-recurrent translocations by karyotyping, but revealed the now well-established recurrent gain of 7q34 by aCGH. Our series included one anaplastic oligoastrocytoma, tumours that have not previously been characterised genomically in children, and an anaplastic neuroepithelial tumour (probably an oligoastrocytoma); both tumours showed losses of chromosomes 14 by G-banding as well as structural aberrations of the long arm of chromosome 6, and loss of 14q, 17p, and 22q by aCGH. Three supratentorial primitive neuroectodermal tumours (n=5) showed aberrant karyotypes; two near-diploid with mainly structural changes and one near-triploid with several trisomies including gains of one copy of chromosomes 1, 2, and 7. aCGH confirmed these findings and revealed additional recurrent gains of 1q21-44, 3p21, and 3q29. We also describe cytogenetically for the first time a cribriform neuroepithelial tumour, a recently identified variant of atypical teratoid/rhabdoid tumour with a favourable prognosis, which showed loss of 1p33, 4q13.2, 10p12.31, 10q11.22, and 22q by aCGH.
Project description:The pathogenesis of paediatric central nervous system tumours is still poorly understood. In an attempt to increase the knowledge of the genetic mechanisms underlying these tumours, we performed genome-wide screening of 17 paediatric gliomas and embryonal tumours using a combination of G-band karyotyping and array comparative genomic hybridisation (aCGH). G-banding revealed abnormal karyotypes in 56% of tumour samples (9 of 16; one failed in culture), whereas aCGH analysis found copy number aberrations in all 13 tumours that could be examined. Pilocytic astrocytomas (n=3) showed normal karyotypes or simple non-recurrent translocations by karyotyping, but revealed the now well-established recurrent gain of 7q34 by aCGH. Our series included one anaplastic oligoastrocytoma, tumours that have not previously been characterised genomically in children, and an anaplastic neuroepithelial tumour (probably an oligoastrocytoma); both tumours showed losses of chromosomes 14 by G-banding as well as structural aberrations of the long arm of chromosome 6, and loss of 14q, 17p, and 22q by aCGH. Three supratentorial primitive neuroectodermal tumours (n=5) showed aberrant karyotypes; two near-diploid with mainly structural changes and one near-triploid with several trisomies including gains of one copy of chromosomes 1, 2, and 7. aCGH confirmed these findings and revealed additional recurrent gains of 1q21-44, 3p21, and 3q29. We also describe cytogenetically for the first time a cribriform neuroepithelial tumour, a recently identified variant of atypical teratoid/rhabdoid tumour with a favourable prognosis, which showed loss of 1p33, 4q13.2, 10p12.31, 10q11.22, and 22q by aCGH. Tumour sample analysed with control DNA (supplied by Agilent)
Project description:We have used Illumina Infinium HumanMethylation450 BeadChip array profiling to profile paediatric high grade gliomas and diffuse intrinsic pontine gliomas. The 450K methylation array is being used to separate brain tumour samples on the basis of their methylation profiles which represent the cell of origin the time and place in which tumours arise. Methylation arrays provide data for an integrated molecular diagnosis of brain tumours and define specific molecular subgroups and subtypes of high grade gliomas carrying distinct driver mutations and patterns of somatic alterations. These data form part of an integrated meta-analysis of high grade gliomas in children combining DNA copy number, methylation and high throughput sequencing datasets.
Project description:41 lung adenocarcinoma from never-smokers hybridized on Illumina SNP arrays on 13 HumanCNV370-Quadv3 chips. High-resolution array comparative genomic hybridization analysis of lung adenocarcinoma in 41 never smokers for identification of new minimal common regions (MCR) of gain or loss. The SNP array analysis validated copy-number aberrations and revealed that RB1 and WRN were altered by recurrent copy-neutral loss of heterozygosity.The present study has uncovered new aberrations containing cancer genes. The oncogene FUS is a candidate gene in the 16p region that is frequently gained in never smokers. Multiple genetic pathways defined by gains of MYC, deletions of RB1 and WRN or gains on 7p and 7q are involved in lung adenocarcinoma in never smokers. A 'Cartes d'Identite des Tumeurs' (CIT) project from the French National League Against Cancer (http://cit.ligue-cancer.net) 41 samples hybridized on Illumina SNP arrays. Submitter : Fabien PETEL petelf@ligue-cancer.net . Project leader : Pr Pierre FOURET pierre.fouret@psl.aphp.fr
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:As genome-scale technologies begin to unravel the complexity of the equivalent tumours in adults, detailed characterisation of high grade gliomas in children have until recently been lacking. In order to validate and extend investigations of the differences between paediatric and adult tumours, we carried out copy number profiling by array CGH using a 32K BAC platform on 63 formalin-fixed paraffin-embedded (FFPE) cases of high grade glioma arising in children and young people (<23 yrs).