Project description:Using paired tumor and non-tumor lung tissues from 47 individuals we identified common changes in DNA methylation associated with the development of non-small cell lung cancer. Pathologically normal lung tissue taken at the time of cancer resection was matched to tumorous lung tissue and together were probed for methylation status using Illumina GoldenGate arrays. For each matched pair the change in methylation at each CpG was calculated (the odds ratio), and these ratios were averaged across individuals and ranked by magnitude to identify the CpGM-bM-^@M-^Ys with the greatest change in methylation associated with tumor development. Using paired tumor and non-tumor lung tissues from 47 individuals we identified common changes in DNA methylation associated with the development of non-small cell lung cancer. Pathologically normal lung tissue taken at the time of cancer resection was matched to tumorous lung tissue and together were probed for methylation status using Illumina GoldenGate arrays. For each matched pair the change in methylation at each CpG was calculated (the odds ratio), and these ratios were averaged across individuals and ranked by magnitude to identify the CpGM-bM-^@M-^Ys with the greatest change in methylation associated with tumor development.
Project description:Using paired tumor and non-tumor lung tissues from 47 individuals we identified common changes in DNA methylation associated with the development of non-small cell lung cancer. Pathologically normal lung tissue taken at the time of cancer resection was matched to tumorous lung tissue and together were probed for methylation status using Illumina GoldenGate arrays. For each matched pair the change in methylation at each CpG was calculated (the odds ratio), and these ratios were averaged across individuals and ranked by magnitude to identify the CpG’s with the greatest change in methylation associated with tumor development.
Project description:Lung tumors, as well as normal tumor-adjacent (NTA) tissue of non-small cell lung cancer (NSCLC) patients, were collected and subjected label-free quantitation shotgun proteomics in data-independent mode to identify differences between the tumors and adjacent tissue. By employing in-depth proteomics, we identified several pathways that are up- or downregulated in the tumors of non-small cell lung cancer patients.
Project description:Gene expression profiles of tumor and paired normal lung tissues from primary non-small cell lung cancer (NSCLC) patients in Taiwan.
Project description:Gene expression of samples derived from normal lung and patients with small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC)