Project description:In patients with chronic pulmonary disease colonization with the mold Aspergillus fumigatus is associated with declining pulmonary function and obstructive airway disease. One potential effector of this inflammatory response is the pulmonary mast cell. In vitro studies have demonstrated that A. fumigatus contact induces IgE-independent mast cell degranulation. Conversely, the Aspergillus secondary metabolite gliotoxin has been shown to suppress mast cell activation. These contradictory results emphasize the need for a better understanding of the interactions between A. fumigatus and mast cells. Thus, the objective of this work was to identify A. fumigatus genes that are differentially regulated upon exposure to mast cells. Transcriptional profiling experiments indicated that, in addition to genes encoding for iron acquisition systems, allergens and putative virulence factors, genes from the gliotoxin biosynthesis cluster were significantly down-regulated upon exposure to mast cells. Globally, the results from this study provide insight into the A. fumigatus response to mast cells and suggest that one mechanism by which the host may circumvent the effects of gliotoxin is via the suppression of fungal gliotoxin synthesis by mast cells.
Project description:This SuperSeries is composed of the following subset Series: GSE24983: Response of A549 cells treated with Aspergillus fumigatus [WT-CF_vs_WT-GC] GSE24984: Response of A549 cells treated with Aspergillus fumigatus [WT-GC_vs_PrtT-GC] GSE24985: Response of A549 cells treated with Aspergillus fumigatus [WT-CF_vs_PrtT-CF] Refer to individual Series
Project description:Genomic DNA from five strains, Aspergillus fumigatus Af71, Aspergillus fumigatus Af294, Aspergillus clavatus, Neosartorya fenneliae, and Neosartorya fischeri, were co-hybridized with that of Aspergillus fumigatus Af293 and compared.
Project description:To investigate the influence of Aspergillus fumigatus on iron regulation in macrophages, we obtained macrophages in culture from human derived monocytes and co-cultured the monocyte-derived macrophages with Aspergillus conidia at a 1:1 ratio. We collected samples at 0, 2, 4, 6 and 8 hours and extracted RNA. We then performed gene expression profiling analysis using data obtained from RNA-seq of control macrophages and macrophage co-cultured with Aspergillus fumigatus at five time points.
Project description:Aspergillus fumigatus is an important human pathogen and a leading fungal killer. This study aimed to determine the small RNA repertoire of A. fumigatus in conidia and mycelium grown for 24 or 48 hours in liquid culture.
Project description:Aspergillus fumigatus is an important human pathogen and a leading fungal killer. This study aimed to determine the tRNA fragment and tRNA half repertoire of A. fumigatus in wild-type conidia and mycelium grown for 24 or 48 hours in liquid culture.
Project description:Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections including invasive aspergillosis. We aimed to understand molecular targets of AMB in Aspergillus fumigatus (Afu) by genomic approaches. Keywords: Aspergillus fumigatus treated with amphotericin B for 24 hours
Project description:Gene expression profiling of Aspergillus fumigatus comparing controls grown at normal zinc concentration of aspergillus minimum media (77uM), low (1uM) and high (500uM) zinc concentrations.
Project description:Response of A549 cells treated with Aspergillus fumigatus wild type culture filtrate (WT-CF) or PrtT protease deficient mutant culture filtrate (PrtT-CF) for 8h Aspergillus fumigatus is the most commonly encountered mold pathogen of humans, predominantly infecting the respiratory system. Colonization and penetration of the lung alveolar epithelium is a key but poorly understood step in the infection process. This study focused on identifying the transcriptional and cell-signaling responses activated in A549 alveolar carcinoma cells incubated in the presence of A. fumigatus wild-type and ΔPrtT protease-deficient germinating conidia and culture filtrates (CF). Microarray analysis of exposed A549 cells identified distinct classes of genes whose expression is altered in the presence of germinating conidia and CF and suggested the involvement of both NFkB and MAPK signaling pathways in mediating the cellular response. Phosphoprotein analysis of A549 cells confirmed that JNK and ERK1/2 are phosphorylated in response to CF treatment in a protease-dependent manner. Inhibition of JNK or ERK1/2 kinase activity substantially decreased CF-induced cell damage, including cell peeling, actin-cytoskeleton damage, and reduction in metabolic activity and necrotic death. These results suggest that inhibition of MAPK-mediated host responses to treatment with A. fumigatus CF decreases cellular damage, a finding with possible clinical implications.
Project description:Response of A549 cells treated with Aspergillus fumigatus germinating conidia (WT-GC) or culture filtrate (WT-CF) for 8h Aspergillus fumigatus is the most commonly encountered mold pathogen of humans, predominantly infecting the respiratory system. Colonization and penetration of the lung alveolar epithelium is a key but poorly understood step in the infection process. This study focused on identifying the transcriptional and cell-signaling responses activated in A549 alveolar carcinoma cells incubated in the presence of A. fumigatus wild-type and ΔPrtT protease-deficient germinating conidia and culture filtrates (CF). Microarray analysis of exposed A549 cells identified distinct classes of genes whose expression is altered in the presence of germinating conidia and CF and suggested the involvement of both NFkB and MAPK signaling pathways in mediating the cellular response. Phosphoprotein analysis of A549 cells confirmed that JNK and ERK1/2 are phosphorylated in response to CF treatment in a protease-dependent manner. Inhibition of JNK or ERK1/2 kinase activity substantially decreased CF-induced cell damage, including cell peeling, actin-cytoskeleton damage, and reduction in metabolic activity and necrotic death. These results suggest that inhibition of MAPK-mediated host responses to treatment with A. fumigatus CF decreases cellular damage, a finding with possible clinical implications.