Project description:TLR3, TLR7, and TLR9 stimulation induces many mouse inflammatory and autoimmune cytokines or immune receptors DRGN were cultures 5 days prior to a 16 hour stimulation - Three separate studies were analyzed for inflammatory response
Project description:We profiled CD115-selected mouse spleen monocytes after stimulation with aPL HL7G and after stimulation with Tlr7 agonist R848, Tlr9 agonist CpGB and Tlr3 agonist Poly I/C
Project description:UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.
Project description:Macrophages play a crucial role in HIV-1 pathogenesis. Toll-like receptors (TLRs) are fundamental for innate and adaptive immune responses, but their role in HIV-1 infection is still incompletely understood. The TLR3 and TLR4 ligands poly(I:C) and LPS are known to modulate HIV-1 infection of and replication in monocyte-derived macrophages (MDMs), but the mechanism is incompletely understood. We found that MDMs stimulation with poly(I:C) or LPS abrogated infection by CCR5-using, macrophage-tropic HIV-1, or by VSV-G-pseudotyped HIV-1 virions, while TLR7 and TLR9 agonists Imiquimod and CpG only reduced infection to varying extent. Suppression of infection, or lack thereof, did not correlate with differential effects on CD4 or CCR5 expression, type I interferon induction, or production of pro-inflammatory cytokines. Furthermore, integrated pro-viruses were readily detected in unstimulated, TLR7- and TLR9-stimulated cells, but not in TLR3- or TLR4-stimulated MDMs, suggesting the alteration of post-entry, pre-integration event(s). MicroRNA (miRNA) microarray and real time PCR demonstrated increased miR-155 levels in MDMs upon TLR3/4, but not TLR7, stimulation, and a miR-155 inhibitor partially restored infectivity in poly(I:C)-stimulated MDMs. Finally, miR-155 over-expression in MDMs and cell lines remarkably diminished HIV-1 infection, inducing an accumulation of late reverse transcription products, concurrently with a decrease in mRNA levels of several HIV-1 dependency factors involved in nuclear import of pre-integration complexes. Our results suggest that miR-155 may target mRNA(s) for host cell protein(s) that either participate in or facilitate post-entry, pre-integration events, resulting in severely diminished HIV-1 infection. miRNA profiles were investigated in total RNA isolated from unstimulated and TLR3-, TLR4- and TLR7-stimulated human MDMs from a single normal donor
Project description:Aim: Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with intact peripheral neurons is lacking. Methods: we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing. Results: The expression profile of these three cell lines did not resemble any specific dorsal root ganglion neuron subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Conclusion: This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration.
Project description:Dorsal root ganglion neurons are the primary neurons of the sensory afferent pathway and are a heterogeneous population. Dorsal root ganglion neurons exhibit a wide range of terminal morphologies, complex central projection patterns, and different physiological properties, which allow them to adapt to various sensory stimulation modalities and transmit the corresponding sensory information to the central nervous system. Here, we used single-cell sequencing technology to explore the mechanisms behind the differences in axonal lengths in DRG neurons cultured in vitro. The single-cell sequencing data grouped by axon length were compared and analyzed to find core genes that may be closely related to axon length in a list of differentially expressed genes that significantly change with axon length; as well as to explore whether these genes also play an important role in the process of axon regeneration after peripheral nerve injury.
Project description:In order to establish a consensus catalog of dorsal rott ganglion cell types, we used comprehensive transcriptome analysis of single cells for unsupervised identification and molecular classification of sensory neurons independent of any a priori knowledge of sensory subtypes. RNA-Seq was performed on 799 dissociated single cells dissected from the mouse lumbar dorsal root ganglion distributed over a total of nine 96-well plates