Project description:Human embryonic stem cells (hESCs) harbor the ability to undergo lineage-specific differentiation into clinically relevant cell types. Transcription factors and epigenetic modifiers are known to play important roles in the maintenance of pluripotency of hESCs. However, little is known about regulation of pluripotency through splicing. In this study, we identify the spliceosome-associated factor SON as a novel factor essential for the maintenance of hESCs. Depletion of SON in hESCs results in the loss of pluripotency and cell death. Using genome-wide RNA profiling, we identified transcripts that are regulated by SON. Importantly, we confirmed that SON regulates the proper splicing of transcripts encoding for pluripotency regulators such as PRDM14, OCT4, E4F1 and MED24. Furthermore, we show that SON is bound to these transcripts in vivo. In summary, we connect a splicing-regulatory network for accurate transcription production to the maintenance of pluripotency and self-renewal of hESCs.
Project description:Exon and expression analysis of HeLa cells after knockdown of SON Serine-arginine-rich (SR) proteins play a key role in alternative pre-mRNA splicing in eukaryotes. Our laboratory recently showed that a large SR protein called Son has unique repeat motifs that are essential for maintaining the subnuclear organization of pre-mRNA processing factors in nuclear speckles. Motif analysis of Son highlights putative RNA interaction domains that suggest a direct role for Son in pre-mRNA splicing. A genome-wide screen was performed to identify putative human transcription and splicing targets of Son.
Project description:Exon and expression analysis of HeLa cells after knockdown of SON Serine-arginine-rich (SR) proteins play a key role in alternative pre-mRNA splicing in eukaryotes. Our laboratory recently showed that a large SR protein called Son has unique repeat motifs that are essential for maintaining the subnuclear organization of pre-mRNA processing factors in nuclear speckles. Motif analysis of Son highlights putative RNA interaction domains that suggest a direct role for Son in pre-mRNA splicing. A genome-wide screen was performed to identify putative human transcription and splicing targets of Son. HeLa cells were transfected with siRNA against SON or a control siRNA (siLuciferase) for 48 hours. Five biological replicates were used for each condition.
Project description:Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression. Importantly, alternatively spliced short isoforms of SON are markedly upregulated in acute myeloid leukemia. The short isoforms compete with full-length SON for chromatin occupancy, but lack the menin-binding ability, thereby antagonizing full-length SON function in transcriptional repression while not impairing full-length SON-mediated RNA splicing. Furthermore, overexpression of a short isoform of SON enhances replating potential of hematopoietic progenitors. Our findings define SON as a fine-tuner of the MLL-menin interaction and reveal short SON overexpression as a marker indicating aberrant transcriptional initiation in leukemia.
Project description:All vertebrates possess lymphocytes, enabling the functional interrogation of this evolutionarily conserved organizing principle of adaptive immunity in non-mammalian species. A forward genetic screen in zebrafish indicated that a mutation of tnpo3, encoding a regulator of alternative splicing of pre-mRNAs, specifically impaired intrathymic T cell development. In mouse T cells, Tnpo3 deficiency predominantly disrupted the splicing of genes encoding RNA-binding motifs, and it specifically blocked the splicing of Va11, associated with reduced numbers of peripheral T cells and the complete loss of iNKT cells. Our results reveal an evolutionarily conserved function of a pre-mRNA processing factor for T cell development, uncovering a previously unappreciated checkpoint during the formation of mature mRNAs of the Tcra gene.
Project description:Control of the number of centrosomes is critical for cell division, trafficking and cilia. Regulation of centrosome number occurs through the precise duplication of centrioles that reside in the center of centrosomes. Here we explored transcriptional control of centriole assembly by focusing on alternative splicing factors in isolation from other cell cycle processes. Of five splicing factors originally identified as required for centriole assembly, only SON is specifically required. Procentriole assembly is severely disrupted when SON is reduced but early centriole assembly events still occur. Whole genome mRNA sequencing identified thousands of genes whose splicing and expression are affected by the reduction of SON, with an enrichment of genes involved in the microtubule cytoskeleton. SON is required for the proper splicing and expression of the centriolar satellite protein, CEP131. Fluorescence microscopy and electron tomography establish key differences to the trafficking and microtubule network around the centrosomes that contribute to the centriole assembly defects. This establishes SON as required for centriole assembly, partially through its activity in splicing CEP131 and through control of microtubules organized by the centrosome.
Project description:Although splicing is essential for the expression of most eukaryotic genes, inactivation of splicing factors causes specific defects in mitosis. The molecular cause of this defect is unknown. Here we show that the spliceosome subunits SNW1 and PRPF8 are essential for sister chromatid cohesion in human cells. A transcriptome-wide analysis revealed that SNW1 or PRPF8 depletion affects the splicing of specific introns in a subset of pre-mRNAs, including pre-mRNAs encoding the cohesion protein sororin and the APC/C subunit APC2. SNW1 depletion causes cohesion defects predominantly by reducing sororin levels, which causes destabilisation of cohesin on DNA. SNW1 depletion also reduces APC/C activity and contributes to cohesion defects indirectly by delaying mitosis and causing ‘cohesion fatigue’. Simultaneous expression of sororin and APC2 from intron-less cDNAs restores cohesion in SNW1 depleted cells. These results indicate that the spliceosome is required for mitosis because it enables expression of genes essential for cohesion. Our transcriptome-wide identification of retained introns in SNW1 and PRPF8 depleted cells may help to understand the aetiology of diseases associated with splicing defects, such as retinosa pigmentosum and cancer.
Project description:Although splicing is essential for the expression of most eukaryotic genes, inactivation of splicing factors causes specific defects in mitosis. The molecular cause of this defect is unknown. Here we show that the spliceosome subunits SNW1 and PRPF8 are essential for sister chromatid cohesion in human cells. A transcriptome-wide analysis revealed that SNW1 or PRPF8 depletion affects the splicing of specific introns in a subset of pre-mRNAs, including pre-mRNAs encoding the cohesion protein sororin and the APC/C subunit APC2. SNW1 depletion causes cohesion defects predominantly by reducing sororin levels, which causes destabilisation of cohesin on DNA. SNW1 depletion also reduces APC/C activity and contributes to cohesion defects indirectly by delaying mitosis and causing ‘cohesion fatigue’. Simultaneous expression of sororin and APC2 from intron-less cDNAs restores cohesion in SNW1 depleted cells. These results indicate that the spliceosome is required for mitosis because it enables expression of genes essential for cohesion. Our transcriptome-wide identification of retained introns in SNW1 and PRPF8 depleted cells may help to understand the aetiology of diseases associated with splicing defects, such as retinosa pigmentosum and cancer.