Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

RNA-Seq after knockdown of SON in human embryonic stem cells


ABSTRACT: Human embryonic stem cells (hESCs) harbor the ability to undergo lineage-specific differentiation into clinically relevant cell types. Transcription factors and epigenetic modifiers are known to play important roles in the maintenance of pluripotency of hESCs. However, little is known about regulation of pluripotency through splicing. In this study, we identify the spliceosome-associated factor SON as a novel factor essential for the maintenance of hESCs. Depletion of SON in hESCs results in the loss of pluripotency and cell death. Using genome-wide RNA profiling, we identified transcripts that are regulated by SON. Importantly, we confirmed that SON regulates the proper splicing of transcripts encoding for pluripotency regulators such as PRDM14, OCT4, E4F1 and MED24. Furthermore, we show that SON is bound to these transcripts in vivo. In summary, we connect a splicing-regulatory network for accurate transcription production to the maintenance of pluripotency and self-renewal of hESCs.

INSTRUMENT(S): Illumina HiSeq 2000

ORGANISM(S): Homo sapiens

SUBMITTER: Jonathan Goke 

PROVIDER: E-MTAB-1687 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2014-03-30 | E-GEOD-42430 | biostudies-arrayexpress
2011-12-22 | E-GEOD-28672 | biostudies-arrayexpress
2014-03-30 | E-MTAB-2072 | biostudies-arrayexpress
2011-09-14 | E-GEOD-30995 | biostudies-arrayexpress
2009-07-31 | E-MEXP-1192 | biostudies-arrayexpress
2010-06-30 | E-GEOD-3132 | biostudies-arrayexpress
2011-09-14 | E-GEOD-31948 | biostudies-arrayexpress
2019-11-11 | PXD013869 | Pride
2011-09-14 | E-GEOD-30992 | biostudies-arrayexpress
2023-05-05 | PXD025284 | Pride