Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Differentiated motor neurons from hiPSC derived from peripheral nerve fibroblasts of sporadic ALS patients and evaluated the gene expression profile by means microarray-linked to specific analysis tools. Two-condition experiment, ALS patients motor neurons vs. controls. Biological replicates: 3 ALS replicates, 3 control replicates.
Project description:Microarray analysis of peripheral blood mononuclear cells (PBMCs) from IgA nephropathy patients, membranous nephropathy patients and healthy controls.
Project description:Coding and long non-coding RNA metabolism is now revealing its crucial role in Amyotrophic Lateral Sclerosis (ALS) pathogenesis. In this work, we performed Illumina RNA-seq analysis on Peripheral Blood Mononuclear Cells (PBMCs) from Sporadic and mutated ALS patients (mutations in FUS, TARDBP, SOD1, C9Orf72 and VCP genes) and healthy controls. Our aim is the whole-transcriptome characterization of PBMCs content, both in terms of coding and non coding RNAs, in order to compare the disease state to the healthy controls, both for sporadic patients and for mutated patients. Out dataset is a starting point for the omni-comprehensive analysis of coding and long non coding RNAs, from an easy to withdraw, manage and store tissue that shows to be a suitable model for RNA profiling in ALS.