Project description:Molecular Elasticity and Adjustment of Drought Recovery Dynamics of 14N- and 15N-fertilized Legume Medicago truncatula. Climate change in conjunction with population growth necessitates a systems biology approach to characterize plant drought response and a more thorough understanding of the underlying molecular mechanisms. During drought stress and recovery, the metabolome and proteome regulate and are regulated through diverse mechanisms including synthesis and degradation. In order to study this complex regulation network, a front-end multilevel analysis is presented for the first time, investigating protein turnover, regulatory classes of proteins and metabolites as well as post translational ubiquitination of a target set of proteins during a severe stress and recovery scenario in the model legume Medicago truncatula. Evidence for enhanced translational proteome regulation was observed during drought recovery and functional clusters of differentially dynamic phases during the course of recovery were defined. The data give novel insights into molecular elasticity that enable recovery of drought stressed plants. Additionally, these results offer putative targets and metabolic pathways for future plant-bioengineering towards enhanced drought stress tolerance.
Project description:Medicago truncatula endogenous small RNAs The dataset contains Medicago truncatula Gaertn. cv. Jemalong endogenous small RNA sequences in the range 18-28 nucleotides. High-throughput Solexa/Illumina sequencing was carried out at the Sainsbury Laboratory, Norwich, UK. Please see www.illumina.com for details of the technology. Small RNA sequences were mapped to Medicago truncatula genome release 2.0 (http://www.medicago.org/genome/), the number of matches to the unfinished genome, if any, is recorded in the Series supplementary file GSE13761_sequence_annotations.txt.gz.
Project description:Medicago truncatula endogenous small RNAs The dataset contains Medicago truncatula Gaertn. cv. Jemalong endogenous small RNA sequences in the range 18-28 nucleotides. High-throughput Solexa/Illumina sequencing was carried out at the Sainsbury Laboratory, Norwich, UK. Please see www.illumina.com for details of the technology. Small RNA sequences were mapped to Medicago truncatula genome release 2.0 (http://www.medicago.org/genome/), the number of matches to the unfinished genome, if any, is recorded in the Series supplementary file GSE13761_sequence_annotations.txt.gz. Size fractionated small RNA from total RNA extracts was ligated to adapters, purified again and reverse transcribed. After PCR amplification the sample was subjected to Solexa/Illumina high throughput pyrosequencing. Please see www.illumina.com for details of the sequencing technology.
Project description:Transcriptional profiling of seeds of Medicago truncatula during maturation. To identify genes that are regulated during seed maturation in the model legume Medicago truncatula, plants at flowering stage were grown at variable light and temperature conditions under greenhouse environment (period March-June). Seeds were then collected at different stages of development. Using the Medicago NimbleGen chip, a transcriptomic analysis was performed to follow the differential expression of genes during seed maturation.
Project description:Transcriptional profiling of seeds of Medicago truncatula during maturation. To identify genes that are regulated during seed maturation in the model legume Medicago truncatula, plants at flowering stage were grown at controlled temperature of 21-19°C, 16h light. Seeds were then collected at different stages of development. Using the Medicago NimbleGen chip, a transcriptomic analysis was performed to follow the differential expression of genes during seed maturation.
Project description:Transcriptional profiling of seeds of Medicago truncatula during maturation. To identify genes that are regulated during seed maturation in the model legume Medicago truncatula, plants at flowering stage were grown at variable light and temperature conditions under greenhouse environment (period March-June). Seeds were then collected at different stages of development. Using the Medicago NimbleGen chip, a transcriptomic analysis was performed to follow the differential expression of genes during seed maturation.
Project description:We used laser-capture microdissection (LCM) to isolate specific cells from the Medicago truncatula nodule meristem (M), the distal infection (DIZ), the proximal infection zone (PIZ), infected cells (IC) and uninfected cells (UIC) from the fixation zone. Based on Medicago GeneChips, we identified the cell- and tissue-specific programm of gene expression in Medicago truncatula root nodules.