Project description:Sox9 is an SRY-related transcription factor required for expression of cartilaginous matrix genes in the developing skeletal system and heart valve structures. In contrast to positively regulating formation of cartilaginous matrix, Sox9 has also been shown to negatively regulate matrix mineralization associated with bone formation. While the transcriptional activation of Sox9 target genes during chondrogenesis has been well studied, the mechanisms by which Sox9 represses osteogenic processs are not so clear. To address this, we performed a genome-wide Sox9 ChIP-on-chip approach using neonatal mouse lim tissue. Chromatin immunoprecipitation was performed with pooled Sox9 antibodies and normal rabbit IgG as control using neonatal mouse limb tissue. Samples include Sox9 IP and IgG IP.
Project description:Heart valve formation initiates when endothelial cells of the heart transform into mesenchyme and populate the cardiac cushions. The transcription factor, SOX9, is highly expressed in the cardiac cushion mesenchyme, and is essential for heart valve development. Loss of Sox9 in mouse cardiac cushion mesenchyme alters cell proliferation, embryonic survival, and disrupts valve formation. Despite this important role, little is known regarding how SOX9 regulates heart valve formation or its transcriptional targets. Therefore, we mapped putative SOX9 binding sites by ChIP-Seq in embryonic day (E) 12.5 heart valves, a stage at which the valve mesenchyme is actively proliferating and initiating differentiation. Embryonic heart valves have been shown to express a high number of genes that are associated with chondrogenesis, including several extracellular matrix proteins and transcription factors that regulate chondrogenesis. Consequently, we compared regions of putative SOX9 DNA-binding between E12.5 heart valves and E12.5 limb buds. We identified context-dependent and contextâindependent SOX9 interacting regions throughout the genome. Analysis of context-independent SOX9 binding suggests an extensive role for SOX9 across tissues in regulating proliferation-associated genes including key components of the AP-1 complex. Integrative analysis of tissue-specific SOX9 interacting regions and gene expression profiles on Sox9-deficient heart valves demonstrated that SOX9 controls the expression of several transcription factors with previously identified roles in heart valve development, including Twist1, Sox4, Mecom/Evi1 and Pitx2. Together, our data identifies SOX9 coordinated transcriptional hierarchies that control cell proliferation and differentiation during valve formation. Examination of SOX9 binding sites in E12.5 atrioventricular canal (AVC) and E12.5 embryonic limb and mRNA expression profiling in E12.5 WT and Sox9 mutant AVCs, in duplicate.
Project description:The acetylation levels of histones and other proteins change during aging and have been linked to neurodegeneration. Here we show that deletion of the histone acetyltransferase (HAT) co-factor Trrap specifically impairs the function of the transcription factor Sp1, reduces its stability and causes a decrease in histone acetylation at Sp1 target genes. Modulation of Sp1 function by Trrap acts as a hub regulating multiple processes involved in neuron and neural stem cells function and maintenance including microtubule dynamics and the Wnt signaling pathway. Consistently, Trrap conditional mutants exhibit all hallmarks of neurodegeneration including dendrite retraction and axonal swellings, neuron death, astrogliosis, microglia activation, demyelination and decreased adult neurogenesis. Our results uncovered a novel functional network, essential to prevent neurodegeneration, and involving the specific regulation of Sp1 transcription factor and its downstream targets by Trrap-HAT.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Sex differences in liver gene expression are dictated by sex-differences in circulating growth hormone (GH) profiles. Presently, the pituitary hormone dependence of mouse liver gene expression was investigated on a global scale to discover sex-specific early GH response genes that might contribute to sex-specific regulation of downstream GH targets and to ascertain whether intrinsic sex-differences characterize hepatic responses to plasma GH stimulation. RNA expression analysis using 41,000-feature microarrays revealed two distinct classes of sex-specific mouse liver genes: genes subject to positive regulation (class-I) and genes subject to negative regulation by pituitary hormones (class-II). Genes activated or repressed in hypophysectomized (Hypox) mouse liver within 30-90min of GH pulse treatment at a physiological dose were identified as direct targets of GH action (early response genes). Intrinsic sex-differences in the GH responsiveness of a subset of these early response genes were observed. Notably, 45 male-specific genes, including five encoding transcriptional regulators that may mediate downstream sex-specific transcriptional responses, were rapidly induced by GH (within 30min) in Hypox male but not Hypox female mouse liver. The early GH response genes were enriched in 29 male-specific targets of the transcription factor Mef2, whose activation in hepatic stellate cells is associated with liver fibrosis leading to hepatocellular carcinoma, a male-predominant disease. Thus, the rapid activation by GH pulses of certain sex-specific genes is modulated by intrinsic sex-specific factors, which may be associated with prior hormone exposure (epigenetic mechanisms) or genetic factors that are pituitary-independent, and could contribute to sex-differences in predisposition to liver cancer or other hepatic pathophysiologies.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:Sox9 is an SRY-related transcription factor required for expression of cartilaginous matrix genes in the developing skeletal system and heart valve structures. In contrast to positively regulating formation of cartilaginous matrix, Sox9 has also been shown to negatively regulate matrix mineralization associated with bone formation. While the transcriptional activation of Sox9 target genes during chondrogenesis has been well studied, the mechanisms by which Sox9 represses osteogenic processs are not so clear. To address this, we performed a genome-wide Sox9 ChIP-on-chip approach using neonatal mouse lim tissue.