Project description:Background: Chronic atrial fibrillation (AF) is a complication associated with the dilated atria of patients with valvular heart disease and contributes to worsened pathology. Methods and Results: Using microarray technology, we examined microRNA (miR) expression profiles in right and left atrial appendage tissue from valvular heart disease (VHD) patients. Right atrial appendage from patients undergoing coronary artery bypass grafting (CABG) and left atrial (LA) appendage from healthy hearts not used for transplant were used as controls. VHD induced different changes in miR expression in LA compared with right atria (RA). Fifty-two (52) miRs were altered by VHD in LA, compared with 5 in RA tissue. There was no detectable effect of chronic AF on miR expression in LA tissue, but miR expression in RA was strongly influenced by AF, with 47 miRs showing differential expression. LA volume correlated with miR expression changes in both LA and RA, but the affected miRs were different for the two atrial groups. Conclusions: VHD and AF influence miR expression patterns in LA and RA, but these are affected differently by disease progression and by the development of AF. These findings provide new insights into the progression of VHD. RA tissue is not a useful surrogate for LA in studies of mitral valve disease. 34 arrays from either the left or right atrium from patients with Valvular Heart Disease (VHD), patients undergoing coronary artery bypass grafting (CABG), or healthy controls. Arrays in this series were generated on V2 and V3 Agilent microRNA arrays and analysed in combination.
Project description:Background: Chronic atrial fibrillation (AF) is a complication associated with the dilated atria of patients with valvular heart disease and contributes to worsened pathology. Methods and Results: Using microarray technology, we examined microRNA (miR) expression profiles in right and left atrial appendage tissue from valvular heart disease (VHD) patients. Right atrial appendage from patients undergoing coronary artery bypass grafting (CABG) and left atrial (LA) appendage from healthy hearts not used for transplant were used as controls. VHD induced different changes in miR expression in LA compared with right atria (RA). Fifty-two (52) miRs were altered by VHD in LA, compared with 5 in RA tissue. There was no detectable effect of chronic AF on miR expression in LA tissue, but miR expression in RA was strongly influenced by AF, with 47 miRs showing differential expression. LA volume correlated with miR expression changes in both LA and RA, but the affected miRs were different for the two atrial groups. Conclusions: VHD and AF influence miR expression patterns in LA and RA, but these are affected differently by disease progression and by the development of AF. These findings provide new insights into the progression of VHD. RA tissue is not a useful surrogate for LA in studies of mitral valve disease.
Project description:Background: Atrial fibrillation (AF) causes atrial remodeling, and the left atrium (LA) is the favored substrate for maintaining AF. However, it remains unclear if AF remodels both atria differently and contributes to LA arrhythmogenesis and thrombogenesis. Results: AF was associated with differential LA-to-RA gene expression related to specific ion channels and pathways as well as upregulation of thrombogenesis-related genes in the LA appendage. Targeting the molecular mechanisms underlying the LA-to-RA difference and AF-related remodeling in the LA appendage may help provide new therapeutic options in treating AF and preventing thromboembolism in AF. Paired left atrial and right atrial specimens were obtained from 13 patients with persistent AF receiving valvular surgery. The Paired specimens were sent for microarray comparison. Selected results were validated by quantitative real time-PCR (q-PCR) and Western blotting. Ultrastructural changes in the atria were evaluated by immunohistochemistry.
Project description:Hypertension, and structural heart diseases are associated with an increased risk of atrial fibrillation. Strenuous exercise is also associated with an increased risk of atrial fibrillation. Whether similar mechanisms underly the atrial cardiomypathy in both cases is currently uknown. We conducted an RNA microarray of right and left atria of sham and TAC rats to uncover the mechanisms driving atrial remodeling. These results were compared with remodeling induced by different loads of exercise (GSE289211).
Project description:Next Generation RNA Sequencing was carried out on human paired left and right atrial appendages from patients with and without Atrial Fibrillation. EdgeR software was used to show a total of 247 genes were found to have significant differential expression between left and right atria.
Project description:We report the mRNA sequencing of right and left atria from an adult inducible, cardiomyocyte-specific Notch gain-of-function mouse model (iNICD). Using the tetracycline-on system, we activated Notch by feeding doxycycline chow for 3 weeks to mice that were at least 8 weeks old. We asked what transcriptional changes occur in right versus left atrial cardiomyocytes in response to the same stimulus (Notch signaling). mRNA sequencing on separated right and left atria revealed that there are more differentially dysregulated transcripts (1,011) than similarly regulated transcripts (447) in the right and left atria, which is a simiar paradigm as what occurs in human atrial cardiomyocytes of patients with atrial fibrillation.
Project description:We report the application of a pericentriolar material 1 (PCM-1) based cardiomyocyte-specific nuclear isolation protocol on human cardiac tissue to specifically ask what transcriptional changes occur in cardiomyocytes of humans with atrial fibrillation. We performed RNA-sequencing on the cardiomyocyte-specific nuclear RNA and found that there are more differentially dysregulated (1343) than similarly regulated transcripts (99) in the right versus left atria. This study is the first of its kind aimed at understanding the transcriptional changes that occur specifically in the left and right atrial cardiomyocytes of humans with atrial fibrillation.
Project description:Atrial fibrillation (AF) is the most common heart arrhythmia disease. The greatest risk of atrial fibrillation is stroke, and stroke caused by valvular heart disease with atrial fibrillation (AF-VHD) is more serious. the development mechanism from VHD to AF-VHD is not yet clear. The research on expression profiles of lncRNA and mRNA is helpful to explore molecular mechanism in patients with valvular heart disease who develop atrial fibrillation.
Project description:Atrial fibrillation (AF) is the most common persistent arrhythmia that affect 1–2% of the general population. People with AF display an array of complications cardiogenic stroke and systemic embolism caused by hemodynamic instability and blood hypercoagulability in clinical practice. However, it’s still unclear whether and how ubiquitylated proteins react to AF in the left atrial appendage of patients with AF and valvular heart disease. This theory focuses on the changes of ubiquitylated proteins in atrial fibrillation associated with heart valve disease. We firstly widely analysis the proteins ubiquitination in patients with atrial fibrillation.
Project description:Strenuous exercise increases the risk of atrial fibrillation, while moderate physical activity has been suggested to decrease its risk, Data from animal models suggest that intensive exercise, but not moderate training, increases atrial fibrosis and could be on the basis of the increased atrial fibrillation risk. The impact of the transition from moderate to strenuous exercise on atrial fibrillation risk and its underlying mechanisms remain poorly understood. We aimed to analyze biatrial remodeling after moderate and strenuous exercise. We conducted an RNA microarray of right and left atria of sedentary, mdoeratel-trained, and intensively-trained rats to uncover the mechanisms leading to atrial fibrosis in intensively trained rats.