Project description:Oral potentially malignant disorders (OPMDs) may precede oral squamous cell carcinoma (OSCC). Early detection of OPMDs has a crucial role in OSCC prevention. DNA aneuploidy and chromosomal aberrations are markers of genomic DNA damage and chromosomal instability (CIN), which is involved in cancer development. We explored the relationship among genomic DNA copy number aberrations (CNAs), histological diagnosis and DNA aneuploidy in OPMDs/OSCCs. Samples from OPMDs and OSCCs were processed for high resolution DNA flow cytometry (hr DNA-FCM) to determine the relative DNA content expressed with the DNA index (DI). Additionally, on a subset of these samples, array-Comparative Genomic Hybridization (aCGH) analysis was performed on DNA obtained from diploid nuclei suspension or from aneuploid-enriched nuclei suspensions. DNA copy number aberrations were determined using high resolution arrays on 151 samples (2x105K, n=82 samples, and 4x180K, n=69 samples) (Agilent Technologies, Palo Alto, CA, USA). Labeling, hybridization, scanning and feature extraction were performed as previously described using the cross hybridization method previously described [Castagnola P, Malacarne D, Scaruffi P, Maffei M, Donadini A, et al. (2011) Chromosomal aberrations and aneuploidy in oral potentially malignant lesions: distinctive features for tongue. BMC Cancer 11: 445.].
Project description:The mucosae of the oral cavity are different at the histological level but are all exposed to common genotoxic agents. As a result of this exposure, changes in the mucosal epithelia develop giving rise to Oral Potentially Malignant Lesions (OPMLs), which with time may in turn progress to Oral Squamous Cell Carcinomas (OSCCs). Therefore, much effort should be devoted to identify features able to predict the likeliness of progression associated with an OPML. Such features may be helpful in assisting the clinician to establish both appropriate therapies and follow-up schedules. Here, we report a pilot study that compared the anatomical subsites of OPMLs development with occurrence of DNA aneuploidy and chromosomal copy number aberrations (CNAs). Multiple samples from histologically diagnosed OPMLs were processed for high resolution DNA flow cytometry (hr DNA-FCM) in order to determine the relative DNA content expressed by the DNA index (DI). Additionally, array-Comparative Genomic Hybridization (a-CGH) analysis was performed on FCM-sorted nuclei subpopulations based on DI values. Tongue OPMLs were more frequently associated with DNA aneuploidy and CNAs than OPMLs arising from all the other mucosal subsites. We suggest that the follow-up and the management of the patients with tongue OPMLs should receive a distinctive special attention. Clearly, this conclusion should be validated in a prospective clinical study. exposed to common genotoxic agents. As a result of this exposure, changes in the mucosal epithelia develop giving rise to Oral Potentially Malignant Lesions (OPMLs), which with time may in turn progress to Oral Squamous Cell Carcinomas (OSCCs). Therefore, much effort should be devoted to identify features able to predict the likeliness of progression associated with an OPML. Such features may be helpful in assisting the clinician to establish both appropriate therapies and follow-up schedules. Here, we report a pilot study that compared the anatomical subsites of OPMLs development with occurrence of DNA aneuploidy and chromosomal copy number aberrations (CNAs). Multiple samples from histologically diagnosed OPMLs were processed for high resolution DNA flow cytometry (hr DNA-FCM) in order to determine the relative DNA content expressed by the DNA index (DI). Additionally, array-Comparative Genomic Hybridization (a-CGH) analysis was performed on FCM-sorted nuclei subpopulations based on DI values. Tongue OPMLs were more frequently associated with DNA aneuploidy and CNAs than OPMLs arising from all the other mucosal subsites. We suggest that the follow-up and the management of the patients with tongue OPMLs should receive a distinctive special attention. Clearly, this conclusion should be validated in a prospective clinical study. We analyzed: 19 samples (4 aneuploid and 15 diploid components) deriving from oral potentially malignant lesions without dysplasia obtained of 16 patients; 14 samples (2 aneuploid and 12 diploid components) deriving from oral potentially malignant lesions with dysplasia obtained from 11 patients (two patients had multiple dysplastic lesions); 2 samples from visually normal mucosa in the near field obtained from two patients with dysplastic lesions. All the aneuploid samples had a purity of at least 90%.
Project description:The mucosae of the oral cavity are different at the histological level but are all exposed to common genotoxic agents. As a result of this exposure, changes in the mucosal epithelia develop giving rise to Oral Potentially Malignant Lesions (OPMLs), which with time may in turn progress to Oral Squamous Cell Carcinomas (OSCCs). Therefore, much effort should be devoted to identify features able to predict the likeliness of progression associated with an OPML. Such features may be helpful in assisting the clinician to establish both appropriate therapies and follow-up schedules. Here, we report a pilot study that compared the anatomical subsites of OPMLs development with occurrence of DNA aneuploidy and chromosomal copy number aberrations (CNAs). Multiple samples from histologically diagnosed OPMLs were processed for high resolution DNA flow cytometry (hr DNA-FCM) in order to determine the relative DNA content expressed by the DNA index (DI). Additionally, array-Comparative Genomic Hybridization (a-CGH) analysis was performed on FCM-sorted nuclei subpopulations based on DI values. Tongue OPMLs were more frequently associated with DNA aneuploidy and CNAs than OPMLs arising from all the other mucosal subsites. We suggest that the follow-up and the management of the patients with tongue OPMLs should receive a distinctive special attention. Clearly, this conclusion should be validated in a prospective clinical study. exposed to common genotoxic agents. As a result of this exposure, changes in the mucosal epithelia develop giving rise to Oral Potentially Malignant Lesions (OPMLs), which with time may in turn progress to Oral Squamous Cell Carcinomas (OSCCs). Therefore, much effort should be devoted to identify features able to predict the likeliness of progression associated with an OPML. Such features may be helpful in assisting the clinician to establish both appropriate therapies and follow-up schedules. Here, we report a pilot study that compared the anatomical subsites of OPMLs development with occurrence of DNA aneuploidy and chromosomal copy number aberrations (CNAs). Multiple samples from histologically diagnosed OPMLs were processed for high resolution DNA flow cytometry (hr DNA-FCM) in order to determine the relative DNA content expressed by the DNA index (DI). Additionally, array-Comparative Genomic Hybridization (a-CGH) analysis was performed on FCM-sorted nuclei subpopulations based on DI values. Tongue OPMLs were more frequently associated with DNA aneuploidy and CNAs than OPMLs arising from all the other mucosal subsites. We suggest that the follow-up and the management of the patients with tongue OPMLs should receive a distinctive special attention. Clearly, this conclusion should be validated in a prospective clinical study.
Project description:The aim of the study was to address the concept of field cancerization in oral cancer. The presence of genomic aberrations, indicative of chromosomal instability (CIN), in oral distant fields (ODFs) of visually normal and non-dysplastic mucosa at the mirror image from concomitant oral potentially malignant lesions (OPMLs) was investigated. This pilot study comprised 16 OPMLs (8 without dysplasia, nd-OPMLs; 8 with dysplasia, d-OPMLs) and 16 ODFs. DNA diploid (DNA Index, DI=1) and aneuploid (DIM-bM-^IM- 1) sublines were detected by high resolution DNA-flow cytometry (FCM) at (hr DNA-FCM) using DAPI stained nuclei suspensions. Nuclei with different DIs were FCM-sorted in order to enrich the epithelial component and to obtain genomic DNA for high resolution oligonucleotide array-Comparative Genomic Hybridization (a-CGH) analysis to provide a genome-wide measurement of DNA copy number aberrations (CNAs). The frequencies of DNA aneuploidy in ODFs and OPMLs were 6.2% and 43.8%, respectively (p=0.037). ODFs and nd-OPMLs were all near-diploid (DIM-bM-^IM- 1 and DIM-bM-^IM-$1.4), while d-OPMLs were also high-aneuploid (DI>1.4). CNA averages were 2.3 in ODFs (1.5 for nd-OPMLs and 3.1 for d-OPMLs), and 7.325 in OPMLs (3.0 in nd-OPMLs; 11.6 in d-OPMLs). CNAs were present in the DNA diploid sublines and often the same CNAs were observed in both ODFs and corresponding OPMLs DNA aneuploid sublines and CNAs in the present series of 16 ODFs are likely to represent early events of the natural history of oral carcinogenesis and to indicate an early onset of the field effect cancerization. Moreover, gains within 20q13.33-qter, 7p22.2-pter and 16p13.3-pter chromosomal regions in ODFs and in the relative OPMLs suggest that specific genes localized in these regions (RTEL1, MAD1L1 and TEL2) might contribute to the ODF/d-OPML transition. We analyzed: 8 samples of oral potentially malignant lesions with dysplasia, 8 samples of oral potentially malignant lesions without dysplasia and for each patient a corresponding oral distant field of visually normal mucosa.
Project description:Oral potentially malignant disorders (OPMDs) may precede oral squamous cell carcinoma (OSCC). Early detection of OPMDs has a crucial role in OSCC prevention. DNA aneuploidy and chromosomal aberrations are markers of genomic DNA damage and chromosomal instability (CIN), which is involved in cancer development. We explored the relationship among genomic DNA copy number aberrations (CNAs), histological diagnosis and DNA aneuploidy in OPMDs/OSCCs. Samples from OPMDs and OSCCs were processed for high resolution DNA flow cytometry (hr DNA-FCM) to determine the relative DNA content expressed with the DNA index (DI). Additionally, on a subset of these samples, array-Comparative Genomic Hybridization (aCGH) analysis was performed on DNA obtained from diploid nuclei suspension or from aneuploid-enriched nuclei suspensions.
Project description:The aim of the study was to address the concept of field cancerization in oral cancer. The presence of genomic aberrations, indicative of chromosomal instability (CIN), in oral distant fields (ODFs) of visually normal and non-dysplastic mucosa at the mirror image from concomitant oral potentially malignant lesions (OPMLs) was investigated. This pilot study comprised 16 OPMLs (8 without dysplasia, nd-OPMLs; 8 with dysplasia, d-OPMLs) and 16 ODFs. DNA diploid (DNA Index, DI=1) and aneuploid (DI≠1) sublines were detected by high resolution DNA-flow cytometry (FCM) at (hr DNA-FCM) using DAPI stained nuclei suspensions. Nuclei with different DIs were FCM-sorted in order to enrich the epithelial component and to obtain genomic DNA for high resolution oligonucleotide array-Comparative Genomic Hybridization (a-CGH) analysis to provide a genome-wide measurement of DNA copy number aberrations (CNAs). The frequencies of DNA aneuploidy in ODFs and OPMLs were 6.2% and 43.8%, respectively (p=0.037). ODFs and nd-OPMLs were all near-diploid (DI≠1 and DI≤1.4), while d-OPMLs were also high-aneuploid (DI>1.4). CNA averages were 2.3 in ODFs (1.5 for nd-OPMLs and 3.1 for d-OPMLs), and 7.325 in OPMLs (3.0 in nd-OPMLs; 11.6 in d-OPMLs). CNAs were present in the DNA diploid sublines and often the same CNAs were observed in both ODFs and corresponding OPMLs DNA aneuploid sublines and CNAs in the present series of 16 ODFs are likely to represent early events of the natural history of oral carcinogenesis and to indicate an early onset of the field effect cancerization. Moreover, gains within 20q13.33-qter, 7p22.2-pter and 16p13.3-pter chromosomal regions in ODFs and in the relative OPMLs suggest that specific genes localized in these regions (RTEL1, MAD1L1 and TEL2) might contribute to the ODF/d-OPML transition.
Project description:Genomic DNA damage in oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs). Early detection of DNA aneuploidy and chromosomal aberrations in non dysplastic OPMDs.
Project description:Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide including the Asian subcontinent. Oral carcinoma exhibits inherent heterogeneity in terms of the sites involved, etiology and pathology. They occur at multiple sites such as tongue, buccal mucosa, maxilla. Effective approaches towards improving survival rates in OSCC patients are primarily focused on early detection of the disease. The early clinical indication of the disease follows the development of potentially malignant lesions (leukoplakia/erythro-leukoplakia) with varied rates of transformation. Currently histopathological evaluation of oral biopsy is generally practiced to evaluate potential malignancy. However, human saliva has been considered to be a valuable medium for discovering biomarker molecules for malignancy. Exfoliated cancer cells may release protein or RNA molecules into the saliva or free molecules may be secreted or leaked from cancer cells representing gene expression changes associated with tumor development. Salivary proteins thus provide a strong option for development of non-invasive, point-of-care assays for screening/early detection of oral cancers. Dysplastic leukoplakia (LP) of the oral cavity is a potentially malignant condition for oral squamous cell carcinoma (OSCC), early detection of which is an unmet clinical need. In an effort to develop non-invasive biomarker based method for early detection of the disease, we have used quantitative mass spectrometry to identify differently abundant salivary proteins in OSCC (buccal mucosa) patients and individuals with potential to develop cancer (oral dysplastic leukoplakia) in comparison to healthy controls (with risk habits such as tobacco chewing or smoking).
Project description:Clinically evident oral lesions, oral epithelial dysplasia, precede development of oral squamous cell carcinomas (SCC) and are considered to transform to cancer by acquisition of genetic or epigenetic alterations. Here, we show that, +3q24-qter, -8pter-p23.1, +8q12-q24.2 and +20 are early events identifying two pathways to oral cancers that differ in clinical behavior. One or more of these copy number aberrations is present in the major subgroup (3q8pq20 subtype, 75-80% of lesions) that develops with chromosomal instability and risk for metastasis, while they are absent from the smaller and chromosomally stable non-3q8pq20 subgroup (20-25% of lesions) associated with low risk for metastasis. Thus, +3q, -8p, +8q and +20 is a biomarker for oral SCC metastasis. On the other hand, while increased numbers of genomic alterations can be harbingers of progression to cancer, dysplastic lesions lacking copy number changes cannot be considered benign as they are potential precursors to non-3q8pq20 oral SCC. 63 oral SCCs and adjacent regions of normal tissue, 44 oral dysplasias