Project description:To exlore more circRNAs involved in Arabidopsis thaliana, we deeply sequenced 14 samples including whole plants from four developmental stages (rosette leaves > 1 mm in length; rosette growth complete; 50% of flowers to be produced have opened; first silique shattered), aerial part of plants from four stress treatments (control, drought, salinity and heat), five organs (roots, stems, leaves, flowers and siliques) and a mixed sample from whole plants across the lifespan (cotyledons emergence, rosette leaves﹥1 mm, rosette growth complete, first flower open, flourishing florescence, first silique shattered, senescence). The total RNA was purified by rRNA-depletion and linear RNA removal with RNAseR, and paired-end (PE) sequenced by Illumina HiSeq 2500 (read length, PE125, the mixed sample) and Illumina Hiseq X Ten (read length, PE150, 13 independent samples) platforms. We obtained 181.97 Gb raw data (151.37 Gb from 13 samples and 30.6 Gb from a mixed sample) and identified 5861 circRNAs with expression quantity. We annotated the parent genes of these circRNAs and predicted their target sites of microRNAs.
Project description:To explore the overall long noncoding RNA (lncRNA) involved in growth and development of Arabidopsis thaliana across the lifespan, we deeply sequenced samples of whole plants from different developmental stages (4 rosette leaves>1mm, 14 rosette leaves>1mm, rosette growth complete, first flower buds visible, flourishing florescence, first silique shattered, senescence) using strand-specific RNA sequencing (ssRNA-seq) menthod. We obtained 28.8 Gb raw data and identified 156 novel lncRNAs (unreported in all public plant lncRNA databases) . We also categorized the novel lncRNAs as intergenic, intronic, antisense, overlapped with perhaps pseudogenes and mRNA based on their location on the Arabidopsis genome. Furthermore, lncRNAs targeted protein-coding genes were predicted and functional annotated. In addition, we constructed a network of interactions between ncRNAs (miRNAs, lncRNA) and mRNAs. Our results suggest that the identified novel lncRNAs are important in modulating development process of Arabidopsis, and provide a rich resource for further research on the function of these novel lncRNAs.
Project description:To explore the overall circRNAs involved in growth and development of Arabidopsis thaliana across the lifespan, we deeply sequenced samples of whole plants from different developmental stages (cotyledons emergence, rosette leavesï¹¥1 mm, rosette growth complete, first flower open, flourishing florescence, first silique shattered, senescence). The total RNA was purified by rRNA-depletion and linear RNA removal with RNAseR, and sequenced by the Illumina HiSeq2500 platform. We obtained 31 Gb raw data and identified 1217 circRNAs with expression quantity. We annotated these circRNAs and predicted their targeted microRNA. The circRNAs involved in growth and development of Arabidopsis thaliana across lifespan were identified and analyzed using the Illumina HiSeq2500 platform.
Project description:Purpose: plants exposed to multiple simultaneous adverse growth conditions trigger molecular responses that differ from the sum of those to individual stressors. Copper and iron are fundamental elements required for proper photosynthesis, energy production, DNA metabolism and hormone sensing, among all. Therefore, copper and iron deprivation limits plant yield. In natural environments, simultaneous deficiency to copper and iron can occur. As part of a multiple high-throughput study to identify combinatorial responses to both copper and iron deficiency, proteomic profiling of Arabidopsis thaliana rosette leaves exposed to copper and/or iron deficiencies have been conducted.
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. To identify heat stress induced genes, we performed RNA-sequencing of rosette leaves from mock-treated, heat-stressed and heat-stressed-recoved plants of both species.
Project description:In this study, we describe an antibody-based approach to enrich ubiquitinated peptides from vegetative tissues for detection via peptide mass spectrometry. This enrichment method can be coupled with isobaric labeling to enable quantification from up to 18-multiplexed samples. This approach identified 19,740 ubiquitinated lysine sites arising from 5,936 proteins in Arabidopsis primary roots, seedlings and rosette leaves. Gene Ontology analysis indicated that ubiquitinated proteins are associated with numerous biological processes including hormone signaling, plant defense, protein homeostasis, and metabolism. Proteins with altered abundance and ubiquitination state in roots upon bortezomib treatment included transporters, adaptors, and transcription factors.